Suppr超能文献

质子化N-乙酰甲硫氨酸与单线态分子氧(a(1)Δg)的碰撞动力学:酰胺键的影响以及排除低能量下的复合物介导机制

Collision dynamics of protonated N-acetylmethionine with singlet molecular oxygen (a(1)Δg): the influence of the amide bond and ruling out the complex-mediated mechanism at low energies.

作者信息

Lu Wenchao, Liu Fangwei, Emre Rifat, Liu Jianbo

机构信息

Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York , 65-30 Kissena Boulevard, Queens, New York 11367, United States.

出版信息

J Phys Chem B. 2014 Apr 10;118(14):3844-52. doi: 10.1021/jp500780m. Epub 2014 Mar 28.

Abstract

It has been proposed (J. Phys. Chem. B 2011, 115, 2671) that the ammonium group is involved in the gas-phase reaction of protonated methionine (MetH(+)) with singlet oxygen (1)O2, yielding hydrogen peroxide and a dehydro compound of MetH(+) where the -NH3(+) transforms into cyclic -NH2-. For the work reported, the gas-phase reaction of protonated N-acetylmethionine (Ac-MetH(+)) with (1)O2 was examined, including the measurements of reaction products and cross sections over a center-of-mass collision energy (Ecol) range from 0.05 to 1.0 eV using a guided-ion-beam apparatus. The aim is to probe how the acetylation of the ammonium group affects the oxidation chemistry of the ensuing Ac-MetH(+). Properties of intermediates, transition states, and products along the reaction coordinate were explored using density functional theory calculations and Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. Direct dynamics trajectory simulations were carried out at Ecol of 0.05 and 0.1 eV using the B3LYP/4-31G(d) level of theory. In contrast to the highly efficient reaction of MetH(+) + (1)O2, the reaction of Ac-MetH(+) + (1)O2 is extremely inefficient, despite there being exoergic pathways. Two product channels were observed, corresponding to transfer of two H atoms from Ac-MetH(+) to (1)O2 (H2T), and methyl elimination (ME) from a sulfone intermediate complex. Both channels are inhibited by collision energies, becoming negligible at Ecol > 0.2 eV. Analysis of RRKM and trajectory results suggests that a complex-mediated mechanism might be involved at very low Ecol, but direct, nonreactive collisions prevail over the entire Ecol range and physical quenching of (1)O2 occurs during the early stage of collisions.

摘要

有人提出(《物理化学杂志B》2011年,第115卷,第2671页),铵基参与了质子化蛋氨酸(MetH(+))与单线态氧((1)O2)的气相反应,生成过氧化氢和MetH(+)的脱氢化合物,其中-NH3(+)转变为环状-NH2-。对于所报道的工作,研究了质子化N-乙酰蛋氨酸(Ac-MetH(+))与(1)O2的气相反应,包括使用导向离子束装置在质心碰撞能量(Ecol)范围从0.05到1.0 eV内测量反应产物和截面。目的是探究铵基的乙酰化如何影响随后的Ac-MetH(+)的氧化化学。使用密度泛函理论计算和莱斯-拉姆齐格-卡塞尔-马库斯(RRKM)模型探索了沿反应坐标的中间体、过渡态和产物的性质。使用B3LYP/4-31G(d)理论水平在Ecol为0.05和0.1 eV时进行了直接动力学轨迹模拟。与MetH(+) + (1)O2的高效反应相反,Ac-MetH(+) + (1)O2的反应极其低效,尽管存在放能途径。观察到两个产物通道,分别对应于从Ac-MetH(+)向(1)O2转移两个H原子(H2T),以及从砜中间体络合物中消除甲基(ME)。两个通道都受到碰撞能量的抑制,在Ecol > 0.2 eV时变得可以忽略不计。RRKM和轨迹结果分析表明,在非常低的Ecol下可能涉及复杂介导的机制,但在整个Ecol范围内直接的非反应性碰撞占主导,并且(1)O2在碰撞早期发生物理猝灭。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验