Suppr超能文献

催化常数使得双磷酸化中双稳态的出现成为可能。

Catalytic constants enable the emergence of bistability in dual phosphorylation.

作者信息

Conradi Carsten, Mincheva Maya

机构信息

Max Planck Institute for Dynamics of Complex Technical Systems, , Magdeburg, Germany.

出版信息

J R Soc Interface. 2014 Mar 19;11(95):20140158. doi: 10.1098/rsif.2014.0158. Print 2014 Jun 6.

Abstract

Dual phosphorylation of proteins is a principal component of intracellular signalling. Bistability is considered an important property of such systems and its origin is not yet completely understood. Theoretical studies have established parameter values for multistationarity and bistability for many types of proteins. However, up to now no formal criterion linking multistationarity and bistability to the parameter values characterizing dual phosphorylation has been established. Deciding whether an unclassified protein has the capacity for bistability, therefore requires careful numerical studies. Here, we present two general algebraic conditions in the form of inequalities. The first employs the catalytic constants, and if satisfied guarantees multistationarity (and hence the potential for bistability). The second involves the catalytic and Michaelis constants, and if satisfied guarantees uniqueness of steady states (and hence absence of bistability). Our method also allows for the direct computation of the total concentration values such that multistationarity occurs. Applying our results yields insights into the emergence of bistability in the ERK-MEK-MKP system that previously required a delicate numerical effort. Our algebraic conditions present a practical way to determine the capacity for bistability and hence will be a useful tool for examining the origin of bistability in many models containing dual phosphorylation.

摘要

蛋白质的双磷酸化是细胞内信号传导的主要组成部分。双稳性被认为是此类系统的一个重要特性,但其起源尚未完全被理解。理论研究已经为多种类型的蛋白质确定了多稳态和双稳性的参数值。然而,到目前为止,尚未建立将多稳态和双稳性与表征双磷酸化的参数值联系起来的正式标准。因此,要确定一种未分类的蛋白质是否具有双稳性,需要进行仔细的数值研究。在这里,我们以不等式的形式给出两个一般代数条件。第一个条件使用催化常数,如果满足则保证多稳态(从而保证双稳性的可能性)。第二个条件涉及催化常数和米氏常数,如果满足则保证稳态的唯一性(从而保证不存在双稳性)。我们的方法还允许直接计算发生多稳态时的总浓度值。应用我们的结果可以深入了解ERK-MEK-MKP系统中双稳性的出现,而这之前需要进行精细的数值计算。我们的代数条件提供了一种确定双稳性能力的实用方法,因此将成为研究许多包含双磷酸化的模型中双稳性起源的有用工具。

相似文献

1
Catalytic constants enable the emergence of bistability in dual phosphorylation.
J R Soc Interface. 2014 Mar 19;11(95):20140158. doi: 10.1098/rsif.2014.0158. Print 2014 Jun 6.
2
Oscillations and bistability in a model of ERK regulation.
J Math Biol. 2019 Sep;79(4):1515-1549. doi: 10.1007/s00285-019-01402-y. Epub 2019 Jul 25.
3
Dynamics of ERK regulation in the processive limit.
J Math Biol. 2021 Mar 10;82(4):32. doi: 10.1007/s00285-021-01574-6.
4
In distributive phosphorylation catalytic constants enable non-trivial dynamics.
J Math Biol. 2024 Jun 25;89(2):20. doi: 10.1007/s00285-024-02114-8.
5
Multistationarity in mass action networks with applications to ERK activation.
J Math Biol. 2012 Jul;65(1):107-56. doi: 10.1007/s00285-011-0453-1. Epub 2011 Jul 9.
6
Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space.
Math Biosci. 2008 Jan;211(1):105-31. doi: 10.1016/j.mbs.2007.10.004. Epub 2007 Oct 26.
7
Multistationarity in sequential distributed multisite phosphorylation networks.
Bull Math Biol. 2013 Nov;75(11):2028-58. doi: 10.1007/s11538-013-9878-6. Epub 2013 Sep 19.
8
Multistationarity in the Space of Total Concentrations for Systems that Admit a Monomial Parametrization.
Bull Math Biol. 2019 Oct;81(10):4174-4209. doi: 10.1007/s11538-019-00639-4. Epub 2019 Jul 22.
9
Multistationarity and Bistability for Fewnomial Chemical Reaction Networks.
Bull Math Biol. 2019 Apr;81(4):1089-1121. doi: 10.1007/s11538-018-00555-z. Epub 2018 Dec 18.
10
Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations.
PLoS One. 2018 Apr 9;13(4):e0195513. doi: 10.1371/journal.pone.0195513. eCollection 2018.

引用本文的文献

1
modelling of the mitogen-activated protein kinase (MAPK) pathway in colorectal cancer: mutations and targeted therapy.
Front Syst Biol. 2023 Aug 23;3:1207898. doi: 10.3389/fsysb.2023.1207898. eCollection 2023.
2
In distributive phosphorylation catalytic constants enable non-trivial dynamics.
J Math Biol. 2024 Jun 25;89(2):20. doi: 10.1007/s00285-024-02114-8.
3
A unified approach to dissecting biphasic responses in cell signaling.
Elife. 2023 Dec 6;13:e86520. doi: 10.7554/eLife.86520.
4
Kinetics of diffusion-influenced multisite phosphorylation with enzyme reactivation.
Biopolymers. 2024 Jan;115(1):e23533. doi: 10.1002/bip.23533. Epub 2023 Mar 29.
5
Topological descriptors of the parameter region of multistationarity: Deciding upon connectivity.
PLoS Comput Biol. 2023 Mar 24;19(3):e1010970. doi: 10.1371/journal.pcbi.1010970. eCollection 2023 Mar.
6
Network regulation meets substrate modification chemistry.
J R Soc Interface. 2023 Feb;20(199):20220510. doi: 10.1098/rsif.2022.0510. Epub 2023 Feb 1.
7
Symmetry breaking meets multisite modification.
Elife. 2021 May 21;10:e65358. doi: 10.7554/eLife.65358.
10
Homo-Oligomerisation in Signal Transduction: Dynamics, Homeostasis, Ultrasensitivity, Bistability.
J Theor Biol. 2020 Aug 21;499:110305. doi: 10.1016/j.jtbi.2020.110305. Epub 2020 May 8.

本文引用的文献

1
Cellular compartments cause multistability and allow cells to process more information.
Biophys J. 2013 Apr 16;104(8):1824-31. doi: 10.1016/j.bpj.2013.02.028.
2
Enzyme-sharing as a cause of multi-stationarity in signalling systems.
J R Soc Interface. 2012 Jun 7;9(71):1224-32. doi: 10.1098/rsif.2011.0664. Epub 2011 Nov 2.
3
Chemical reaction systems with toric steady states.
Bull Math Biol. 2012 May;74(5):1027-65. doi: 10.1007/s11538-011-9685-x. Epub 2011 Oct 12.
4
Multistationarity in mass action networks with applications to ERK activation.
J Math Biol. 2012 Jul;65(1):107-56. doi: 10.1007/s00285-011-0453-1. Epub 2011 Jul 9.
5
Multisite protein phosphorylation--from molecular mechanisms to kinetic models.
FEBS J. 2009 Jun;276(12):3177-98. doi: 10.1111/j.1742-4658.2009.07027.x. Epub 2009 Apr 29.
6
Memory switches in chemical reaction space.
PLoS Comput Biol. 2008 Jul 18;4(7):e1000122. doi: 10.1371/journal.pcbi.1000122.
7
Multistability of signal transduction motifs.
IET Syst Biol. 2008 Mar;2(2):80-93. doi: 10.1049/iet-syb:20070012.
8
Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space.
Math Biosci. 2008 Jan;211(1):105-31. doi: 10.1016/j.mbs.2007.10.004. Epub 2007 Oct 26.
9
On the number of steady states in a multiple futile cycle.
J Math Biol. 2008 Jul;57(1):29-52. doi: 10.1007/s00285-007-0145-z. Epub 2007 Nov 16.
10
Versatile regulation of multisite protein phosphorylation by the order of phosphate processing and protein-protein interactions.
FEBS J. 2007 Feb;274(4):1046-61. doi: 10.1111/j.1742-4658.2007.05653.x. Epub 2007 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验