Suppr超能文献

具有酶复活的扩散影响的多部位磷酸化动力学。

Kinetics of diffusion-influenced multisite phosphorylation with enzyme reactivation.

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.

出版信息

Biopolymers. 2024 Jan;115(1):e23533. doi: 10.1002/bip.23533. Epub 2023 Mar 29.

Abstract

The simplest way to account for the influence of diffusion on the kinetics of multisite phosphorylation is to modify the rate constants in the conventional rate equations of chemical kinetics. We have previously shown that this is not enough and new transitions between the reactants must also be introduced. Here we extend our results by considering enzymes that are inactive after modifying the substrate and need time to become active again. This generalization leads to a surprising result. The introduction of enzyme reactivation results in a diffusion-modified kinetic scheme with a new transition that has a negative rate constant. The reason for this is that mapping non-Markovian rate equations onto Markovian ones with time-independent rate constants is not a good approximation at short times. We then developed a non-Markovian theory that involves memory kernels instead of rate constants. This theory is now valid at short times, but is more challenging to use. As an example, the diffusion-modified kinetic scheme with new connections was used to calculate kinetics of double phosphorylation and steady-state response in a phosphorylation-dephosphorylation cycle. We have reproduced the loss of bistability in the phosphorylation-dephosphorylation cycle when the enzyme reactivation time decreases, which was obtained by particle-based computer simulations.

摘要

为了在多位点磷酸化动力学中考虑扩散的影响,最简单的方法是修改化学动力学常规速率方程中的速率常数。我们之前已经表明,这还不够,还必须引入新的反应物之间的转换。在这里,我们通过考虑在修饰底物后失活并且需要时间重新活跃的酶来扩展我们的结果。这个推广导致了一个令人惊讶的结果。酶再激活的引入导致扩散修饰的动力学方案具有负速率常数的新跃迁。原因是将非马尔可夫速率方程映射到具有时间独立速率常数的马尔可夫方程并不是在短时间内的一个好近似。然后,我们开发了一种非马尔可夫理论,它涉及记忆核而不是速率常数。该理论现在在短时间内有效,但使用起来更具挑战性。例如,使用具有新连接的扩散修饰的动力学方案来计算磷酸化-去磷酸化循环中的双磷酸化动力学和稳态响应。我们已经重现了在酶再激活时间减少时磷酸化-去磷酸化循环中双稳性的丧失,这是通过基于粒子的计算机模拟获得的。

相似文献

4
Theory of Diffusion-Influenced Reaction Networks.扩散影响反应网络理论。
J Phys Chem B. 2018 Dec 13;122(49):11338-11354. doi: 10.1021/acs.jpcb.8b07250. Epub 2018 Oct 4.
7
Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles.扩散限制的磷酸化-去磷酸化循环中的有效反应速率。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022702. doi: 10.1103/PhysRevE.91.022702. Epub 2015 Feb 3.
8
Reversible Stochastically Gated Diffusion-Influenced Reactions.可逆随机门控扩散影响反应
J Phys Chem B. 2016 Aug 25;120(33):8080-9. doi: 10.1021/acs.jpcb.6b00152. Epub 2016 Mar 22.

本文引用的文献

3
Diffusion-induced competitive two-site binding.扩散诱导的竞争性双位点结合。
J Chem Phys. 2019 Mar 7;150(9):094104. doi: 10.1063/1.5079748.
4
Theory of Diffusion-Influenced Reaction Networks.扩散影响反应网络理论。
J Phys Chem B. 2018 Dec 13;122(49):11338-11354. doi: 10.1021/acs.jpcb.8b07250. Epub 2018 Oct 4.
5
Rebinding in biochemical reactions on membranes.膜上生化反应中的再结合。
Phys Biol. 2017 Jul 28;14(5):056002. doi: 10.1088/1478-3975/aa6f93.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验