Chen Peng, Wu Fengdan, Wang Yong
Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444 (PR China).
ChemSusChem. 2014 May;7(5):1407-14. doi: 10.1002/cssc.201301198. Epub 2014 Mar 19.
All high-capacity anodes for lithium-ion (Li-ion) batteries, such as those based on tin (Sn) and silicon (Si), suffer from large volume changes during cycling with lithium ions, and their high capacities can be only achieved in the first few cycles. We design and synthesize a unique four-layer yolk-shell tin-carbon (Sn-C) nanotube array to address this problem. The shape and size of the exterior Sn nanotube@carbon core-shell layer, the encapsulated interior Sn nanowire@carbon nanotube core-shell layer, and the filling level of each layer can be all controlled by adjusting the experimental conditions. Such a nanostructure has not been reported for any metal or metal oxide-based material. Owing to the special design of the electrode structure, the four-layer hierarchical structure demonstrates excellent Li-ion storage properties in terms of high capacity, long cycle life, and high rate performance.
所有用于锂离子电池的高容量阳极,例如基于锡(Sn)和硅(Si)的阳极,在与锂离子循环过程中都会经历较大的体积变化,并且它们的高容量只能在最初的几个循环中实现。我们设计并合成了一种独特的四层蛋黄壳结构的锡-碳(Sn-C)纳米管阵列来解决这个问题。通过调整实验条件,可以控制外部Sn 纳米管@碳核壳层的形状和尺寸、封装的内部Sn纳米线@碳纳米管核壳层以及每层的填充水平。对于任何基于金属或金属氧化物的材料,尚未报道过这种纳米结构。由于电极结构的特殊设计,这种四层分级结构在高容量、长循环寿命和高倍率性能方面表现出优异的锂离子存储性能。