Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
BMC Genomics. 2014 Mar 20;15:216. doi: 10.1186/1471-2164-15-216.
The alcohol dehydrogenase (ADH) gene family uniquely illustrates the concept of enzymogenesis. In vertebrates, tandem duplications gave rise to a multiplicity of forms that have been classified in eight enzyme classes, according to primary structure and function. Some of these classes appear to be exclusive of particular organisms, such as the frog ADH8, a unique NADP+-dependent ADH enzyme. This work describes the ADH system of Xenopus, as a model organism, and explores the first amphibian and reptilian genomes released in order to contribute towards a better knowledge of the vertebrate ADH gene family.
Xenopus cDNA and genomic sequences along with expressed sequence tags (ESTs) were used in phylogenetic analyses and structure-function correlations of amphibian ADHs. Novel ADH sequences identified in the genomes of Anolis carolinensis (anole lizard) and Pelodiscus sinensis (turtle) were also included in these studies. Tissue and stage-specific libraries provided expression data, which has been supported by mRNA detection in Xenopus laevis tissues and regulatory elements in promoter regions. Exon-intron boundaries, position and orientation of ADH genes were deduced from the amphibian and reptilian genome assemblies, thus revealing syntenic regions and gene rearrangements with respect to the human genome. Our results reveal the high complexity of the ADH system in amphibians, with eleven genes, coding for seven enzyme classes in Xenopus tropicalis. Frogs possess the amphibian-specific ADH8 and the novel ADH1-derived forms ADH9 and ADH10. In addition, they exhibit ADH1, ADH2, ADH3 and ADH7, also present in reptiles and birds. Class-specific signatures have been assigned to ADH7, and ancestral ADH2 is predicted to be a mixed-class as the ostrich enzyme, structurally close to mammalian ADH2 but with class-I kinetic properties. Remarkably, many ADH1 and ADH7 forms are observed in the lizard, probably due to lineage-specific duplications. ADH4 is not present in amphibians and reptiles.
The study of the ancient forms of ADH2 and ADH7 sheds new light on the evolution of the vertebrate ADH system, whereas the special features showed by the novel forms point to the acquisition of new functions following the ADH gene family expansion which occurred in amphibians.
醇脱氢酶(ADH)基因家族独特地说明了酶发生的概念。在脊椎动物中,串联重复产生了多种形式,根据其一级结构和功能可分为 8 种酶类。其中一些酶类似乎是特定生物体所特有的,例如青蛙 ADH8,这是一种独特的 NADP+-依赖性 ADH 酶。本工作描述了作为模式生物的非洲爪蟾的 ADH 系统,并探索了首次发布的两栖类和爬行类基因组,以增进对脊椎动物 ADH 基因家族的了解。
使用非洲爪蟾 cDNA 和基因组序列以及表达序列标签(EST)进行了系统发育分析和两栖类 ADH 的结构-功能相关性研究。还将在 Anolis carolinensis(蜥蜴)和 Pelodiscus sinensis(乌龟)基因组中鉴定的新 ADH 序列纳入这些研究。组织和阶段特异性文库提供了表达数据,这些数据得到了非洲爪蟾组织中 mRNA 检测和启动子区域调控元件的支持。从两栖类和爬行类基因组组装中推断出 ADH 基因的外显子-内含子边界、位置和取向,从而揭示了与人类基因组相比的同基因区域和基因重排。我们的结果揭示了非洲爪蟾 ADH 系统的高度复杂性,Xenopus tropicalis 中有 11 个基因,编码 7 种酶类。青蛙具有两栖类特异性的 ADH8 和新型 ADH1 衍生形式 ADH9 和 ADH10。此外,它们还具有在爬行动物和鸟类中存在的 ADH1、ADH2、ADH3 和 ADH7。已经为 ADH7 分配了类特异性特征,并且预测祖先进化的 ADH2 是一种混合类,因为鸵鸟酶结构上与哺乳动物 ADH2 接近,但具有 I 类动力学特性。值得注意的是,在蜥蜴中观察到许多 ADH1 和 ADH7 形式,可能是由于谱系特异性重复所致。ADH4 不存在于两栖类和爬行类中。
对古老形式的 ADH2 和 ADH7 的研究为脊椎动物 ADH 系统的进化提供了新的视角,而新型形式所表现出的特殊特征表明,在两栖类中 ADH 基因家族的扩张导致了新功能的获得。