Majidi Keivan, Li Jun, Muehleman Carol, Brankov Jovan G
Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
Phys Med Biol. 2014 Apr 21;59(8):1877-97. doi: 10.1088/0031-9155/59/8/1877. Epub 2014 Mar 20.
The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique.
基于分析仪的相衬X射线成像(ABI)方法正在成为传统放射成像的一种潜在替代方法。与许多现代成像技术一样,ABI是一种计算成像方法(即图像是根据原始数据计算得出的)。ABI可以同时生成多个平面参数图像,这些图像包含有关物体吸收、折射和散射特性的信息。这些图像是根据通过在分析仪晶体的不同角度位置测量(采样)穿过物体的X射线束的角强度分布而获取的原始数据估算得出的。估算的ABI参数图像中的噪声取决于成像条件,如源强度(通量)、测量角度位置、物体特性以及估算方法。在本文中,我们使用克拉美罗下界(CRLB)来量化参数图像中的噪声特性,并研究源强度、分析仪晶体不同角度位置和物体特性对该界限的影响,假设传递给物体的辐射剂量是固定的。CRLB是无偏估计量方差的最小界限,它定义了无论使用哪种估算方法来估算ABI参数图像所能获得的最佳噪声性能。本文的主要结果是,参数图像中的方差(即噪声)与源强度成正比,并且只需有限数量的分析仪晶体角度测量(均匀物体为11个,最佳非均匀物体为3个)就能获得最佳参数图像。后续的角度测量只会将总剂量分散到各个测量中,而不会改善或恶化CRLB,但增加的测量可能会通过减少估计偏差来改善参数图像。接下来,我们使用CRLB评估多图像射线照相、衍射增强成像和散射衍射增强成像估算技术,尽管所提出的方法可用于评估任何其他ABI参数图像估算技术。