Kitadai Norio
Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan,
J Mol Evol. 2014 Apr;78(3-4):171-87. doi: 10.1007/s00239-014-9616-1. Epub 2014 Mar 21.
Prediction of the thermodynamic behaviors of biomolecules at high temperature and pressure is fundamental to understanding the role of hydrothermal systems in the origin and evolution of life on the primitive Earth. However, available thermodynamic dataset for amino acids, essential components for life, cannot represent experimentally observed polymerization behaviors of amino acids accurately under hydrothermal conditions. This report presents the thermodynamic data and the revised HKF parameters for the simplest amino acid "Gly" and its polymers (GlyGly, GlyGlyGly and DKP) based on experimental thermodynamic data from the literature. Values for the ionization states of Gly (Gly(+) and Gly(-)) and Gly peptides (GlyGly(+), GlyGly(-), GlyGlyGly(+), and GlyGlyGly(-)) were also retrieved from reported experimental data by combining group additivity algorithms. The obtained dataset enables prediction of the polymerization behavior of Gly as a function of temperature and pH, consistent with experimentally obtained results in the literature. The revised thermodynamic data for zwitterionic Gly, GlyGly, and DKP were also used to estimate the energetics of amino acid polymerization into proteins. Results show that the Gibbs energy necessary to synthesize a mole of peptide bond is more than 10 kJ mol(-1) less than previously estimated over widely various temperatures (e.g., 28.3 kJ mol(-1) → 17.1 kJ mol(-1) at 25 °C and 1 bar). Protein synthesis under abiotic conditions might therefore be more feasible than earlier studies have shown.
预测生物分子在高温高压下的热力学行为对于理解热液系统在原始地球生命起源和演化中的作用至关重要。然而,作为生命必需成分的氨基酸的现有热力学数据集,无法准确代表在水热条件下实验观察到的氨基酸聚合行为。本报告基于文献中的实验热力学数据,给出了最简单的氨基酸“甘氨酸”及其聚合物(甘氨酰甘氨酸、甘氨酰甘氨酰甘氨酸和二酮哌嗪)的热力学数据和修订后的HKF参数。甘氨酸(Gly(+)和Gly(-))以及甘氨酸肽(甘氨酰甘氨酸(+)、甘氨酰甘氨酸(-)、甘氨酰甘氨酰甘氨酸(+)和甘氨酰甘氨酰甘氨酸(-))的电离态值,也通过结合基团加和算法从已报道的实验数据中获取。所获得的数据集能够预测甘氨酸聚合行为随温度和pH的变化,与文献中实验得到的结果一致。两性离子甘氨酸、甘氨酰甘氨酸和二酮哌嗪的修订热力学数据,也用于估计氨基酸聚合成蛋白质的能量学。结果表明,在广泛的不同温度下,合成一摩尔肽键所需的吉布斯自由能比先前估计的少10 kJ mol(-1)以上(例如,在25°C和1巴时,从28.3 kJ mol(-1)降至17.1 kJ mol(-1))。因此,非生物条件下的蛋白质合成可能比早期研究所显示的更可行。