Suppr超能文献

N-methylanatoxinol isomers: derivatives of the agonist (+)-anatoxin-a block the nicotinic acetylcholine receptor ion channel.

作者信息

Swanson K L, Aracava Y, Sardina F J, Rapoport H, Aronstam R S, Albuquerque E X

机构信息

Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201.

出版信息

Mol Pharmacol. 1989 Feb;35(2):223-31.

PMID:2465486
Abstract

Using biochemical and patch-clamp techniques, we investigated the pharmacology of S- and R-epimers of N-methylanatoxinol, which are analogs of the semi-rigid, stereoselective, nicotinic agonist (+)-anatoxin-a. In contrast to (+)-anatoxin-a, both isomers had poor ability to inhibit the binding of 125I-alpha-bungarotoxin or to open acetylcholine channels, and they were unable to elicit contracture of frog rectus abdominis muscles. However, both isomers were able to demonstrate significant concentration-dependent blockade of the nicotinic acetylcholine receptor ion channel. The R-isomer was approximately 4-fold more potent in causing inhibition of [3H]H12HTX binding than was the S-isomer, in the absence of carbamylcholine. In the presence of carbamylcholine, the affinity of the R-isomer of N-methylanatoxinol for the ion channel sites was further enhanced, so that its affinity became much greater than that of the S-isomer. Refinement of voltage- and concentration-dependent terms for the ion channel blocking and unblocking rates yielded functions that were able to predict the channel open times and short closed times well. The S-isomer bound and dissociated from the ion channel site of the nicotinic acetylcholine receptor more rapidly and with greater voltage sensitivity than the R-isomer. The present characterization of the antagonistic properties of these new analogs of (+)-anatoxin-a introduces a new aspect to the molecular pharmacology of (+)-anatoxin-a analogs; the semi-rigid compounds could be useful in describing the allosteric binding sites of the acetylcholine receptor, as well as in delimiting the agonist binding site.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验