Suppr超能文献

最小化范德华复合物以外的非共价相互作用的密度泛函失败。

Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes.

机构信息

Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland.

出版信息

Acc Chem Res. 2014 Nov 18;47(11):3217-24. doi: 10.1021/ar400303a. Epub 2014 Mar 21.

Abstract

CONSPECTUS

Kohn-Sham density functional theory offers a powerful and robust formalism for investigating the electronic structure of many-body systems while providing a practical balance of accuracy and computational cost unmatched by other methods. Despite this success, the commonly used semilocal approximations have difficulties in properly describing attractive dispersion interactions that decay with R(-6) at large intermolecular distances. Even in the short to medium range, most semilocal density functionals fail to give an accurate description of weak interactions. The omnipresence of dispersion interactions, which are neglected in the most popular electronic structure framework, has stimulated intense developments during the past decade. In this Account, we summarize our effort to develop and implement dispersion corrections that dramatically reduce the failures of both inter- and intramolecular interaction energies. The proposed schemes range from improved variants of empirical atom pairwise dispersion correction (e.g., dD10) to robust formulations dependent upon the electron density. Emphasis has been placed on introducing more physics into a modified Tang and Toennies damping function and deriving accurate dispersion coefficients. Our most sophisticated and established density-dependent correction, dDsC, is based on a simple generalized gradient approximation (GGA)-like reformulation of the exchange hole dipole moment introduced by Becke and Johnson. Akin to its empirical precursor, dDsC dramatically improves the interaction energy of a variety of standard density functionals simultaneously for typical intermolecular complexes and shorter-range interactions occurring within molecules. The broad applicability and robustness of the dDsC scheme is demonstrated on various representative reaction energies, geometries, and molecular dynamic simulations. The suitability of the a posteriori correction is also established through comparisons with the more computationally demanding self-consistent implementation. The proposed correction is then exploited to identify the key factors at the origin of the errors in thermochemistry beyond van der Waals complexes. Particular focus is placed on charge-transfer and mixed-valence complexes, which are relevant to the field of organic electronics. These types of complexes represent insightful examples for which the delocalization error may partially counterbalance the missing dispersion. Our devised methodology reveals the true performance of standard density functional approximations and the subtle interplay between the two types of errors. The analysis presented provides guidance for future functional development that could further improve the modeling of the structures and properties of molecular materials. Overall, the proposed state-of-the-art approaches have contributed to stress the crucial role of dispersion and improve their description in both straightforward van der Waals complexes and more challenging chemical situations. For the treatment of the latter, we have also provided relevant insights into which type of density functionals to favor.

摘要

概述

Kohn-Sham 密度泛函理论为研究多体系统的电子结构提供了一种强大而稳健的形式,同时提供了准确性和计算成本之间的实际平衡,这是其他方法无法比拟的。尽管取得了这些成功,但常用的半局部近似在正确描述具有吸引力的色散相互作用方面存在困难,这些相互作用在分子间距离较大时随 R(-6)衰减。即使在短至中程范围内,大多数半局部密度泛函也无法准确描述弱相互作用。在最流行的电子结构框架中被忽略的色散相互作用无处不在,这在过去十年中激发了强烈的发展。在本报告中,我们总结了我们开发和实施色散校正的努力,这些校正极大地减少了分子间和分子内相互作用能的失败。所提出的方案范围从改进的经验原子对色散校正(例如 dD10)到依赖于电子密度的稳健配方。重点放在对修改后的 Tang 和 Toennies 阻尼函数引入更多物理知识和推导准确的色散系数上。我们最复杂和成熟的密度相关校正 dDsC 是基于 Becke 和 Johnson 引入的交换孔偶极矩的简单广义梯度近似(GGA)式重新表述。与经验上的前身类似,dDsC 同时极大地改善了各种标准密度泛函的相互作用能,适用于典型的分子间配合物和分子内较短程相互作用。dDsC 方案的广泛适用性和稳健性在各种代表性反应能、几何形状和分子动力学模拟中得到了证明。通过与更具计算挑战性的自洽实现进行比较,也确立了后验校正的适用性。然后利用该校正来确定范德华配合物以外的热化学误差的关键因素。特别关注电荷转移和混合价配合物,这与有机电子学领域有关。这些类型的配合物是有洞察力的例子,其中离域误差可以部分抵消缺失的色散。我们设计的方法揭示了标准密度泛函近似的真实性能以及两种类型误差之间的微妙相互作用。所提出的分析为进一步改进分子材料的结构和性质建模的功能发展提供了指导。总体而言,所提出的最先进方法强调了色散的关键作用,并改进了它们在简单范德华配合物和更具挑战性的化学情况下的描述。对于后者的处理,我们还提供了有关应优先选择哪种类型密度泛函的相关见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验