Crouch Simon, Smith Alex, Painter Dan, Li Jinlei, Roman Eve
Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK.
Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK.
Cancer Epidemiol. 2014 Apr;38(2):193-9. doi: 10.1016/j.canep.2014.02.005. Epub 2014 Mar 18.
We present a new method for determining prevalence estimates together with estimates of their precision, from incidence and survival data using Monte-Carlo simulation techniques. The algorithm also provides for the incidence process to be marked with the values of subject level covariates, facilitating calculation of the distribution of these variables in prevalent cases.
Disease incidence is modelled as a marked stochastic process and simulations are made from this process. For each simulated incident case, the probability of remaining in the prevalent sub-population is calculated from bootstrapped survival curves. This algorithm is used to determine the distribution of prevalence estimates and of the ancillary data associated with the marks of the incidence process. This is then used to determine prevalence estimates and estimates of the precision of these estimates, together with estimates of the distribution of ancillary variables in the prevalent sub-population. This technique is illustrated by determining the prevalence of acute myeloid leukaemia from data held in the Haematological Malignancy Research Network (HMRN). In addition, the precision of these estimates is determined and the age distribution of prevalent cases diagnosed within twenty years of the prevalence index date is calculated.
Determining prevalence estimates by using Monte-Carlo simulation techniques provides a means of calculation more flexible that traditional techniques. In addition to automatically providing precision estimates for the prevalence estimates, the distribution of any measured subject level variables can be calculated for the prevalent sub-population. Temporal changes in incidence and in survival offer no difficulties for the method.
我们提出一种新方法,使用蒙特卡罗模拟技术,根据发病率和生存数据来确定患病率估计值及其精度估计值。该算法还能让发病率过程标记上个体水平协变量的值,便于计算这些变量在现患病例中的分布。
将疾病发病率建模为一个标记随机过程,并据此进行模拟。对于每个模拟的发病病例,根据自抽样生存曲线计算留在现患亚人群中的概率。该算法用于确定患病率估计值以及与发病率过程标记相关的辅助数据的分布。然后,利用这些数据来确定患病率估计值及其精度估计值,以及现患亚人群中辅助变量的分布估计值。通过利用血液系统恶性肿瘤研究网络(HMRN)的数据确定急性髓系白血病的患病率,来说明该技术。此外,确定这些估计值的精度,并计算在患病率指数日期后二十年内诊断出的现患病例的年龄分布。
使用蒙特卡罗模拟技术确定患病率估计值提供了一种比传统技术更灵活的计算方法。除了自动提供患病率估计值的精度估计外,还可以计算现患亚人群中任何测量的个体水平变量的分布。发病率和生存率的时间变化对该方法来说没有困难。