Suppr超能文献

源自鞘氨醇单胞菌属SYK-6的双加氧酶DesB严格底物特异性的分子机制。

Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6.

作者信息

Sugimoto Keisuke, Senda Miki, Kasai Daisuke, Fukuda Masao, Masai Eiji, Senda Toshiya

机构信息

Department of Materials Chemistry, Asahikawa National College of Technology, Asahikawa, Hokkaido, Japan.

Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan.

出版信息

PLoS One. 2014 Mar 21;9(3):e92249. doi: 10.1371/journal.pone.0092249. eCollection 2014.

Abstract

DesB, which is derived from Sphingobium sp. SYK-6, is a type II extradiol dioxygenase that catalyzes a ring opening reaction of gallate. While typical extradiol dioxygenases show broad substrate specificity, DesB has strict substrate specificity for gallate. The substrate specificity of DesB seems to be required for the efficient growth of S. sp. SYK-6 using lignin-derived aromatic compounds. Since direct coordination of hydroxyl groups of the substrate to the non-heme iron in the active site is a critical step for the catalytic reaction of the extradiol dioxygenases, the mechanism of the substrate recognition and coordination of DesB was analyzed by biochemical and crystallographic methods. Our study demonstrated that the direct coordination between the non-heme iron and hydroxyl groups of the substrate requires a large shift of the Fe (II) ion in the active site. Mutational analysis revealed that His124 and His192 in the active site are essential to the catalytic reaction of DesB. His124, which interacts with OH (4) of the bound gallate, seems to contribute to proper positioning of the substrate in the active site. His192, which is located close to OH (3) of the gallate, is likely to serve as the catalytic base. Glu377' interacts with OH (5) of the gallate and seems to play a critical role in the substrate specificity. Our biochemical and structural study showed the substrate recognition and catalytic mechanisms of DesB.

摘要

DesB源自鞘氨醇单胞菌属(Sphingobium sp.)SYK-6,是一种II型间苯二酚双加氧酶,可催化没食子酸盐的开环反应。虽然典型的间苯二酚双加氧酶具有广泛的底物特异性,但DesB对没食子酸盐具有严格的底物特异性。DesB的底物特异性似乎是鞘氨醇单胞菌属SYK-6利用木质素衍生的芳香族化合物高效生长所必需的。由于底物羟基与活性位点中非血红素铁的直接配位是间苯二酚双加氧酶催化反应的关键步骤,因此通过生化和晶体学方法分析了DesB的底物识别和配位机制。我们的研究表明,非血红素铁与底物羟基之间的直接配位需要活性位点中Fe(II)离子的大幅移动。突变分析表明,活性位点中的His124和His192对DesB的催化反应至关重要。与结合的没食子酸盐的OH(4)相互作用的His124似乎有助于底物在活性位点中的正确定位。靠近没食子酸盐OH(3)的His192可能作为催化碱。Glu377'与没食子酸盐的OH(5)相互作用,似乎在底物特异性中起关键作用。我们的生化和结构研究揭示了DesB的底物识别和催化机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bac/3962378/41b5aaa2a6f2/pone.0092249.g001.jpg

相似文献

1
Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6.
PLoS One. 2014 Mar 21;9(3):e92249. doi: 10.1371/journal.pone.0092249. eCollection 2014.
2
Crystallization and preliminary crystallographic analysis of gallate dioxygenase DesB from Sphingobium sp. SYK-6.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Nov 1;65(Pt 11):1171-4. doi: 10.1107/S1744309109041086. Epub 2009 Oct 30.
7
Exploring allosteric activation of LigAB from Sphingobium sp. strain SYK-6 through kinetics, mutagenesis and computational studies.
Arch Biochem Biophys. 2015 Feb 1;567:35-45. doi: 10.1016/j.abb.2014.12.019. Epub 2015 Jan 3.
10
Determination of the active site of Sphingobium chlorophenolicum 2,6-dichlorohydroquinone dioxygenase (PcpA).
J Biol Inorg Chem. 2010 Mar;15(3):291-301. doi: 10.1007/s00775-009-0602-9.

引用本文的文献

1
Structural Insights into 4,5-DOPA Extradiol Dioxygenase from : Unraveling the Key Step in Versatile Betalain Biosynthesis.
J Agric Food Chem. 2025 Mar 19;73(11):6785-6794. doi: 10.1021/acs.jafc.4c09501. Epub 2025 Mar 7.
2
Development and Application of Whole-Cell Biosensors for the Detection of Gallic Acid.
ACS Synth Biol. 2023 Feb 17;12(2):533-543. doi: 10.1021/acssynbio.2c00537. Epub 2023 Feb 1.
6
Isolation of a novel platform bacterium for lignin valorization and its application in glucose-free cis,cis-muconate production.
J Ind Microbiol Biotechnol. 2019 Aug;46(8):1071-1080. doi: 10.1007/s10295-019-02190-6. Epub 2019 May 27.
7
Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives.
J Biol Chem. 2019 Jun 28;294(26):10211-10235. doi: 10.1074/jbc.RA119.007595. Epub 2019 May 15.
9
Proteins analysed as virtual knots.
Sci Rep. 2017 Feb 13;7:42300. doi: 10.1038/srep42300.
10
Crystal structure of the TK2203 protein from Thermococcus kodakarensis, a putative extradiol dioxygenase.
Acta Crystallogr F Struct Biol Commun. 2016 Jun;72(Pt 6):427-33. doi: 10.1107/S2053230X16006920. Epub 2016 May 23.

本文引用的文献

2
Evolution of a new bacterial pathway for 4-nitrotoluene degradation.
Mol Microbiol. 2011 Oct;82(2):355-64. doi: 10.1111/j.1365-2958.2011.07817.x. Epub 2011 Sep 13.
3
A hyperactive cobalt-substituted extradiol-cleaving catechol dioxygenase.
J Biol Inorg Chem. 2011 Feb;16(2):341-55. doi: 10.1007/s00775-010-0732-0. Epub 2010 Dec 14.
4
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
5
Crystallization and preliminary crystallographic analysis of gallate dioxygenase DesB from Sphingobium sp. SYK-6.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Nov 1;65(Pt 11):1171-4. doi: 10.1107/S1744309109041086. Epub 2009 Oct 30.
6
Mechanism of extradiol aromatic ring-cleaving dioxygenases.
Curr Opin Struct Biol. 2008 Dec;18(6):644-9. doi: 10.1016/j.sbi.2008.11.001. Epub 2008 Nov 25.
7
Swapping metals in Fe- and Mn-dependent dioxygenases: evidence for oxygen activation without a change in metal redox state.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7347-52. doi: 10.1073/pnas.0711179105. Epub 2008 May 20.
8
Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates.
Science. 2007 Apr 20;316(5823):453-7. doi: 10.1126/science.1134697.
9
Crystallization and preliminary X-ray analysis of the reduced Rieske-type [2Fe-2S] ferredoxin derived from Pseudomonas sp. strain KKS102.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Apr 1;63(Pt 4):311-4. doi: 10.1107/S1744309107009992. Epub 2007 Mar 12.
10
Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds.
Biosci Biotechnol Biochem. 2007 Jan;71(1):1-15. doi: 10.1271/bbb.60437. Epub 2007 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验