1] Vascular Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK [2].
Vascular Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK.
Nat Cell Biol. 2014 Apr;16(4):309-21. doi: 10.1038/ncb2926. Epub 2014 Mar 23.
Endothelial cells show surprising cell rearrangement behaviour during angiogenic sprouting; however, the underlying mechanisms and functional importance remain unclear. By combining computational modelling with experimentation, we identify that Notch/VEGFR-regulated differential dynamics of VE-cadherin junctions drive functional endothelial cell rearrangements during sprouting. We propose that continual flux in Notch signalling levels in individual cells results in differential VE-cadherin turnover and junctional-cortex protrusions, which powers differential cell movement. In cultured endothelial cells, Notch signalling quantitatively reduced junctional VE-cadherin mobility. In simulations, only differential adhesion dynamics generated long-range position changes, required for tip cell competition and stalk cell intercalation. Simulation and quantitative image analysis on VE-cadherin junctional patterning in vivo identified that differential VE-cadherin mobility is lost under pathological high VEGF conditions, in retinopathy and tumour vessels. Our results provide a mechanistic concept for how cells rearrange during normal sprouting and how rearrangement switches to generate abnormal vessels in pathologies.
内皮细胞在血管生成芽生过程中表现出惊人的细胞重排行为;然而,其潜在的机制和功能重要性仍不清楚。通过将计算建模与实验相结合,我们发现 Notch/VEGFR 调节的 VE-钙黏蛋白连接的差异动力学驱动芽生过程中功能性内皮细胞的重排。我们提出,在单个细胞中 Notch 信号水平的持续波动导致 VE-钙黏蛋白的差异周转率和连接嵴突起,从而推动细胞的差异运动。在培养的内皮细胞中,Notch 信号定量减少了连接的 VE-钙黏蛋白的流动性。在模拟中,只有差异的粘附动力学才能产生长程位置变化,这是尖端细胞竞争和干细胞插入所必需的。在体内 VE-钙黏蛋白连接模式的模拟和定量图像分析中,发现病理性高 VEGF 条件下、视网膜病变和肿瘤血管中,差异的 VE-钙黏蛋白流动性丧失。我们的研究结果提供了一个机制性的概念,即细胞如何在正常的芽生过程中重排,以及重排如何切换以在病理条件下生成异常血管。