Suppr超能文献

一致最强大贝叶斯检验

UNIFORMLY MOST POWERFUL BAYESIAN TESTS.

作者信息

Johnson Valen E

机构信息

Department of Statistics, Texas A&M University, 3143 TAMU, College Station, Texas 77843-3143, USA,

出版信息

Ann Stat. 2013;41(4):1716-1741. doi: 10.1214/13-AOS1123.

Abstract

Uniformly most powerful tests are statistical hypothesis tests that provide the greatest power against a fixed null hypothesis among all tests of a given size. In this article, the notion of uniformly most powerful tests is extended to the Bayesian setting by defining uniformly most powerful Bayesian tests to be tests that maximize the probability that the Bayes factor, in favor of the alternative hypothesis, exceeds a specified threshold. Like their classical counterpart, uniformly most powerful Bayesian tests are most easily defined in one-parameter exponential family models, although extensions outside of this class are possible. The connection between uniformly most powerful tests and uniformly most powerful Bayesian tests can be used to provide an approximate calibration between -values and Bayes factors. Finally, issues regarding the strong dependence of resulting Bayes factors and -values on sample size are discussed.

摘要

一致最优势检验是一种统计假设检验,在所有给定规模的检验中,它针对固定的原假设具有最大的检验功效。在本文中,一致最优势检验的概念被扩展到贝叶斯框架,通过将一致最优势贝叶斯检验定义为使支持备择假设的贝叶斯因子超过指定阈值的概率最大化的检验。与它们的经典对应物一样,一致最优势贝叶斯检验在单参数指数族模型中最容易定义,尽管在此类模型之外进行扩展也是可能的。一致最优势检验与一致最优势贝叶斯检验之间的联系可用于提供p值与贝叶斯因子之间的近似校准。最后,讨论了所得贝叶斯因子和p值对样本量的强烈依赖性相关问题。

相似文献

1
UNIFORMLY MOST POWERFUL BAYESIAN TESTS.
Ann Stat. 2013;41(4):1716-1741. doi: 10.1214/13-AOS1123.
2
On the Existence of Uniformly Most Powerful Bayesian Tests With Application to Non-Central Chi-Squared Tests.
Bayesian Anal. 2021 Mar;16(1):93-109. doi: 10.1214/19-ba1194. Epub 2020 Jan 7.
3
Uniformly most powerful Bayesian interval design for phase I dose-finding trials.
Pharm Stat. 2018 Nov;17(6):710-724. doi: 10.1002/pst.1889. Epub 2018 Jul 31.
4
Prior sensitivity of null hypothesis Bayesian testing.
Psychol Methods. 2022 Oct;27(5):804-821. doi: 10.1037/met0000292. Epub 2021 Sep 27.
5
Bayes factors for testing inequality constrained hypotheses: Issues with prior specification.
Br J Math Stat Psychol. 2014 Feb;67(1):153-71. doi: 10.1111/bmsp.12013. Epub 2013 May 18.
6
Bayesian -tests for correlations and partial correlations.
J Appl Stat. 2019 Nov 21;47(10):1820-1832. doi: 10.1080/02664763.2019.1695760. eCollection 2020.
7
Efficient alternatives for Bayesian hypothesis tests in psychology.
Psychol Methods. 2024 Apr;29(2):243-261. doi: 10.1037/met0000482. Epub 2022 Apr 14.
8
A Modified Sequential Probability Ratio Test.
J Math Psychol. 2021 Apr;101. doi: 10.1016/j.jmp.2021.102505. Epub 2021 Mar 4.
9
History and nature of the Jeffreys-Lindley paradox.
Arch Hist Exact Sci. 2023;77(1):25-72. doi: 10.1007/s00407-022-00298-3. Epub 2022 Aug 26.
10
A bayesian approach to the spectral F-Test: Application to auditory steady-state responses.
Comput Methods Programs Biomed. 2020 Jan;183:105100. doi: 10.1016/j.cmpb.2019.105100. Epub 2019 Sep 28.

引用本文的文献

1
CFO: Calibration-Free Odds Bayesian Designs for Dose Finding in Clinical Trials.
JCO Clin Cancer Inform. 2025 Feb;9:e2400184. doi: 10.1200/CCI-24-00184. Epub 2025 Jan 31.
2
Beyond Neyman-Pearson: E-values enable hypothesis testing with a data-driven alpha.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2302098121. doi: 10.1073/pnas.2302098121. Epub 2024 Sep 20.
3
A Characterization of Most(More) Powerful Test Statistics with Simple Nonparametric Applications.
Am Stat. 2024;78(1):36-46. doi: 10.1080/00031305.2023.2192746. Epub 2023 Apr 18.
5
Approximate Bayesian computation design for phase I clinical trials.
Stat Methods Med Res. 2022 Dec;31(12):2310-2322. doi: 10.1177/09622802221122402. Epub 2022 Aug 29.
6
Bayesian -tests for correlations and partial correlations.
J Appl Stat. 2019 Nov 21;47(10):1820-1832. doi: 10.1080/02664763.2019.1695760. eCollection 2020.
7
A Modified Sequential Probability Ratio Test.
J Math Psychol. 2021 Apr;101. doi: 10.1016/j.jmp.2021.102505. Epub 2021 Mar 4.
8
Efficient alternatives for Bayesian hypothesis tests in psychology.
Psychol Methods. 2024 Apr;29(2):243-261. doi: 10.1037/met0000482. Epub 2022 Apr 14.
9
An adaptive gBOIN design with shrinkage boundaries for phase I dose-finding trials.
BMC Med Res Methodol. 2021 Dec 13;21(1):278. doi: 10.1186/s12874-021-01455-y.
10
On the Existence of Uniformly Most Powerful Bayesian Tests With Application to Non-Central Chi-Squared Tests.
Bayesian Anal. 2021 Mar;16(1):93-109. doi: 10.1214/19-ba1194. Epub 2020 Jan 7.

本文引用的文献

1
Bayesian Model Selection in High-Dimensional Settings.
J Am Stat Assoc. 2012;107(498). doi: 10.1080/01621459.2012.682536.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验