Danish Cancer Society Research Center, Copenhagen, Denmark.
Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
Sci Rep. 2023 Mar 23;13(1):4731. doi: 10.1038/s41598-023-31838-8.
Many would probably be content to use Bayesian methodology for hypothesis testing, if it was easy, objective and with trustworthy assumptions. The Bayesian information criterion and some simple bounds on Bayes factor are closest to fit this bill, but with clear limitations. Here we develop an approximation of the so-called Bayes factor applicable in any bio-statistical settings where we have a d-dimensional parameter estimate of interest and the d x d dimensional (co-)variance of it. By design the approximation is monotone in the p value. It it thus a tool to transform p values into evidence (probabilities of the null and the alternative hypothesis, respectively). It is an improvement on the aforementioned techniques by being more flexible, intuitive and versatile but just as easy to calculate, requiring only statistics that will typically be available: e.g. a p value or test statistic and the dimension of the alternative hypothesis.
许多人可能满足于使用贝叶斯方法进行假设检验,如果它简单、客观且具有可靠的假设。贝叶斯信息准则和贝叶斯因子的一些简单界最接近满足这一要求,但有明显的局限性。在这里,我们开发了一种所谓的贝叶斯因子的近似值,适用于任何生物统计环境,我们在其中有一个感兴趣的 d 维参数估计和它的 d x d 维(协)方差。通过设计,该近似值在 p 值中单调递增。因此,它是将 p 值转换为证据(零假设和备择假设的概率)的工具。它通过更灵活、直观和通用但同样易于计算来改进上述技术,仅需要通常可用的统计信息:例如 p 值或检验统计量以及备择假设的维度。