Suppr超能文献

基于功能复合电纺纳米纤维的生物活性表面设计用于生物分子固定化和生物传感器应用。

Bioactive surface design based on functional composite electrospun nanofibers for biomolecule immobilization and biosensor applications.

机构信息

Department of Polymer Science and Technology, Middle East Technical University , 06800, Ankara, Turkey.

出版信息

ACS Appl Mater Interfaces. 2014 Apr 9;6(7):5235-43. doi: 10.1021/am5005927. Epub 2014 Mar 31.

Abstract

The combination of nanomaterials and conducting polymers attracted remarkable attention for development of new immobilization matrices for enzymes. Hereby, an efficient surface design was investigated by modifying the graphite rod electrode surfaces with one-step electrospun nylon 6,6 nanofibers or 4% (w/w) multiwalled carbon nanotubes (MWCNTs) incorporating nylon 6,6 nanofibers (nylon 6,6/4MWCNT). High-resolution transmission electron microscopy study confirmed the successful incorporation of the MWCNTs into the nanofiber matrix for nylon 6,6/4MWCNT sample. Then, these nanofibrous surfaces were coated with a conducting polymer, (poly-4-(4,7-di(thiophen-2-yl)-1H-benzo[d]imidazol-2-yl)benzaldehyde) (PBIBA) to obtain a high electroactive surface area as new functional immobilization matrices. Due to the free aldehyde groups of the polymeric structures, a model enzyme, glucose oxidase was efficiently immobilized to the modified surfaces via covalent binding. Scanning electron microscope images confirmed that the nanofibrous structures were protected after the electrodeposition step of PBIBA and a high amount of protein attachment was successfully achieved by the help of high surface to volume ratio of electroactive nanofiber matrices. The biosensors were characterized in terms of their operational and storage stabilities and kinetic parameters (K(m)(app) and Imax). The resulting novel glucose biosensors revealed good stability and promising Imax values (10.03 and 16.67 μA for nylon 6,6/PBIBA and nylon 6,6/4MWCNT/PBIBA modified biosensors, respectively) and long shelf life (32 and 44 days for nylon 6,6/PBIBA and nylon 6,6/4MWCNT/PBIBA modified biosensors, respectively). Finally, the biosensor was tested on beverages for glucose detection.

摘要

纳米材料和导电聚合物的结合引起了人们对新型酶固定化基质的开发的极大关注。本文通过一步静电纺丝法制备的尼龙 6,6 纳米纤维或含有 4%(w/w)多壁碳纳米管(MWCNTs)的尼龙 6,6 纳米纤维(尼龙 6,6/4MWCNT)对石墨棒电极表面进行修饰,研究了一种有效的表面设计。高分辨率透射电子显微镜研究证实了 MWCNTs 成功地掺入到尼龙 6,6 纳米纤维基质中,得到了尼龙 6,6/4MWCNT 样品。然后,这些纳米纤维表面涂覆有导电聚合物(聚 4-(4,7-二(噻吩-2-基)-1H-苯并[d]咪唑-2-基)苯甲醛)(PBIBA),以获得高的电活性表面积作为新的功能固定化基质。由于聚合物结构中的游离醛基,通过共价键将模型酶葡萄糖氧化酶有效地固定到修饰表面上。扫描电子显微镜图像证实,在 PBIBA 的电沉积步骤后,纳米纤维结构得到了保护,并且通过电活性纳米纤维基质的高表面积与体积比,成功地实现了大量蛋白质的附着。该生物传感器在操作和存储稳定性以及动力学参数(K(m)(app)和 Imax)方面进行了表征。新型葡萄糖生物传感器具有良好的稳定性和有前途的 Imax 值(尼龙 6,6/PBIBA 和尼龙 6,6/4MWCNT/PBIBA 修饰生物传感器分别为 10.03 和 16.67 μA)和较长的保质期(尼龙 6,6/PBIBA 和尼龙 6,6/4MWCNT/PBIBA 修饰生物传感器分别为 32 和 44 天)。最后,该生物传感器用于饮料中葡萄糖的检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验