Université Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institute of Analytical Sciences, UMR 5280, 5 Rue la Doua, F-69100 Villeurbanne, France.
Laboratoire des Interfaces et des Matériaux Avancés, Faculté des Sciences de Monastir, Avenue de l'Environnement, University of Monastir, Monastir 5019, Tunisia.
Sensors (Basel). 2017 Aug 16;17(8):1887. doi: 10.3390/s17081887.
Electrospinning has emerged as a very powerful method combining efficiency, versatility and low cost to elaborate scalable ordered and complex nanofibrous assemblies from a rich variety of polymers. Electrospun nanofibers have demonstrated high potential for a wide spectrum of applications, including drug delivery, tissue engineering, energy conversion and storage, or physical and chemical sensors. The number of works related to biosensing devices integrating electrospun nanofibers has also increased substantially over the last decade. This review provides an overview of the current research activities and new trends in the field. Retaining the bioreceptor functionality is one of the main challenges associated with the production of nanofiber-based biosensing interfaces. The bioreceptors can be immobilized using various strategies, depending on the physical and chemical characteristics of both bioreceptors and nanofiber scaffolds, and on their interfacial interactions. The production of nanobiocomposites constituted by carbon, metal oxide or polymer electrospun nanofibers integrating bioreceptors and conductive nanomaterials (e.g., carbon nanotubes, metal nanoparticles) has been one of the major trends in the last few years. The use of electrospun nanofibers in ELISA-type bioassays, lab-on-a-chip and paper-based point-of-care devices is also highly promising. After a short and general description of electrospinning process, the different strategies to produce electrospun nanofiber biosensing interfaces are discussed.
静电纺丝已成为一种非常强大的方法,它结合了效率、多功能性和低成本,可从各种聚合物中精心设计可扩展的有序和复杂的纳米纤维组件。静电纺纳米纤维在广泛的应用中显示出了巨大的潜力,包括药物输送、组织工程、能量转换和存储,或物理和化学传感器。在过去的十年中,与集成静电纺纳米纤维的生物传感设备相关的工作数量也大幅增加。本文综述了该领域当前的研究活动和新趋势。保留生物受体功能是生产基于纳米纤维的生物传感界面所面临的主要挑战之一。生物受体可以使用各种策略进行固定,具体取决于生物受体和纳米纤维支架的物理和化学特性,以及它们的界面相互作用。由碳、金属氧化物或聚合物静电纺纳米纤维构成的纳米生物复合材料的生产,是过去几年中的主要趋势之一,这些复合材料集成了生物受体和导电纳米材料(例如碳纳米管、金属纳米颗粒)。静电纺纳米纤维在 ELISA 型生物测定、芯片实验室和基于纸张的即时检测设备中的应用也极具前景。在简要介绍了静电纺丝过程之后,本文讨论了用于生产静电纺纳米纤维生物传感界面的不同策略。