Suppr超能文献

用于锂离子电池的FeSb₂-Al₂O₃-C纳米复合负极

FeSb₂-Al₂O₃-C nanocomposite anodes for lithium-ion batteries.

作者信息

Allcorn Eric, Manthiram Arumugam

机构信息

Materials Science and Engineering Program & Texas Materials Institute The University of Texas at Austin Austin, Texas 78712, United States.

出版信息

ACS Appl Mater Interfaces. 2014 Jul 23;6(14):10886-91. doi: 10.1021/am500448f. Epub 2014 Mar 24.

Abstract

FeSb2-Al2O3-C nanocomposite synthesized by ambient-temperature high-energy mechanical milling (HEMM) of Sb2O3, Fe, Al, and C has been investigated as an anode material for lithium-ion batteries. The FeSb2-Al2O3-C nanocomposites are characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The characterization data reveal it to be composed of crystalline FeSb2 nanoparticles finely dispersed in an amorphous matrix of Al2O3 and carbon. The FeSb2-Al2O3-C nanocomposite exhibits an initial discharge (lithiation) capacity of 877 mAh g(-1) and an initial charge (delithiation) capacity of 547 mAh g(-1), yielding an initial coulombic efficiency of 62%. The extended cycling performance for this composite is far superior to that of the intermetallic FeSb2 or a similarly prepared FeSb2-C composite. FeSb2-Al2O3-C retains a specific capacity of ∼350 mAh g(-1) after 500 lithiation/delithiation cycles.

摘要

通过对Sb2O3、Fe、Al和C进行室温高能机械研磨(HEMM)合成的FeSb2-Al2O3-C纳米复合材料已被研究作为锂离子电池的负极材料。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和高分辨率透射电子显微镜(HRTEM)对FeSb2-Al2O3-C纳米复合材料进行了表征。表征数据表明,它由精细分散在Al2O3和碳的非晶基体中的结晶FeSb2纳米颗粒组成。FeSb2-Al2O3-C纳米复合材料的首次放电(锂化)容量为877 mAh g(-1),首次充电(脱锂)容量为547 mAh g(-1),首次库仑效率为62%。该复合材料延长的循环性能远优于金属间化合物FeSb2或类似制备的FeSb2-C复合材料。经过500次锂化/脱锂循环后,FeSb2-Al2O3-C的比容量保持在~350 mAh g(-1)。

相似文献

1
FeSb₂-Al₂O₃-C nanocomposite anodes for lithium-ion batteries.
ACS Appl Mater Interfaces. 2014 Jul 23;6(14):10886-91. doi: 10.1021/am500448f. Epub 2014 Mar 24.
2
Electrochemical Performance of FeSb₂-P@C Composites as Anode Materials for Lithium-Ion Storage.
J Nanosci Nanotechnol. 2018 Feb 1;18(2):1343-1346. doi: 10.1166/jnn.2018.14920.
3
High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries.
Phys Chem Chem Phys. 2014 Jul 7;16(25):12884-9. doi: 10.1039/c4cp01240b.
4
Enhanced Electrochemical Performances of BiO/rGO Nanocomposite via Chemical Bonding as Anode Materials for Lithium Ion Batteries.
ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12469-12477. doi: 10.1021/acsami.7b00996. Epub 2017 Mar 31.
6
Electrically exploded silicon/carbon nanocomposite as anode material for lithium-ion batteries.
J Nanosci Nanotechnol. 2014 Dec;14(12):9340-5. doi: 10.1166/jnn.2014.10132.
7
MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.
ACS Appl Mater Interfaces. 2013 Mar;5(6):2182-7. doi: 10.1021/am303286n. Epub 2013 Mar 7.
8
Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries.
Nanoscale. 2014 Mar 7;6(5):2827-32. doi: 10.1039/c3nr05523j. Epub 2014 Jan 27.
9
Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.
ACS Appl Mater Interfaces. 2015 Jan 28;7(3):1508-15. doi: 10.1021/am506486w. Epub 2015 Jan 17.

引用本文的文献

1
Gallium-Telluride-Based Composite as Promising Lithium Storage Material.
Nanomaterials (Basel). 2022 Sep 27;12(19):3362. doi: 10.3390/nano12193362.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验