Suppr超能文献

BiO/rGO 纳米复合材料通过化学键合作为锂离子电池的阳极材料,其电化学性能得到增强。

Enhanced Electrochemical Performances of BiO/rGO Nanocomposite via Chemical Bonding as Anode Materials for Lithium Ion Batteries.

机构信息

Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215006, China.

Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University , Suzhou 215006, China.

出版信息

ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12469-12477. doi: 10.1021/acsami.7b00996. Epub 2017 Mar 31.

Abstract

Bismuth oxide/reduced graphene oxide (termed BiO@rGO) nanocomposite has been facilely prepared by a solvothermal method via introducing chemical bonding that has been demonstrated by Raman and X-ray photoelectron spectroscopy spectra. Tremendous single-crystal BiO nanoparticles with an average size of ∼5 nm are anchored and uniformly dispersed on rGO sheets. Such a nanostructure results in enhanced electrochemical reversibility and cycling stability of BiO@rGO composite materials as anodes for lithium ion batteries in comparison with agglomerated bare BiO nanoparticles. The BiO@rGO anode material can deliver a high initial capacity of ∼900 mAh/g at 0.1C and shows excellent rate capability of ∼270 mAh/g at 10C rates (1C = 600 mA/g). After 100 electrochemical cycles at 1C, the BiO@rGO anode material retains a capacity of 347.3 mAh/g with corresponding capacity retention of 79%, which is significantly better than that of bare BiO material. The lithium ion diffusion coefficient during lithiation-delithiation of BiO@rGO nanocomposite has been evaluated to be around ∼10-10 cm/S. This work demonstrates the effects of chemical bonding between BiO nanoparticles and rGO substrate on enhanced electrochemical performances of BiO@rGO nanocomposite, which can be used as a promising anode alterative for superior lithium ion batteries.

摘要

通过引入化学键,通过溶剂热法轻松制备了氧化铋/还原氧化石墨烯(称为 BiO@rGO)纳米复合材料,拉曼和 X 射线光电子能谱图谱证明了这一点。大量平均尺寸约为 5nm 的单晶 BiO 纳米颗粒被锚定并均匀分散在 rGO 片上。与团聚的 bare BiO 纳米颗粒相比,这种纳米结构导致作为锂离子电池阳极的 BiO@rGO 复合材料具有增强的电化学可逆性和循环稳定性。BiO@rGO 阳极材料在 0.1C 时可提供高达 900mAh/g 的初始容量,在 10C 速率(1C=600mA/g)时可表现出优异的倍率性能,约为 270mAh/g。在 1C 下经过 100 次电化学循环后,BiO@rGO 阳极材料保留了 347.3mAh/g 的容量,相应的容量保持率为 79%,明显优于 bare BiO 材料。还评估了 BiO@rGO 纳米复合材料在锂化-脱锂过程中的锂离子扩散系数约为 10-10cm/S。这项工作证明了 BiO 纳米颗粒与 rGO 基底之间的化学键对 BiO@rGO 纳米复合材料增强的电化学性能的影响,这使其可用作优异的锂离子电池的有前途的阳极替代物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验