Suppr超能文献

使用分数多项式来模拟暴露累积持续时间对结局的影响:在队列研究和巢式病例对照设计中的应用。

Using fractional polynomials to model the effect of cumulative duration of exposure on outcomes: applications to cohort and nested case-control designs.

作者信息

Austin Peter C, Park-Wyllie Laura Y, Juurlink David N

机构信息

Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada; Institute of Health Management, Policy and Evaluation, University of Toronto, Toronto, Ontario, Canada; Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, Canada.

出版信息

Pharmacoepidemiol Drug Saf. 2014 Aug;23(8):819-29. doi: 10.1002/pds.3607. Epub 2014 Mar 24.

Abstract

PURPOSE

Determining the nature of the relationship between cumulative duration of exposure to an agent and the hazard of an adverse outcome is an important issue in environmental and occupational epidemiology, public health and clinical medicine. The Cox proportional hazards regression model can incorporate time-dependent covariates. An important class of continuous time-dependent covariates is that denoting cumulative duration of exposure.

METHODS

We used fractional polynomial methods to describe the association between cumulative duration of exposure and adverse outcomes. We applied these methods in a cohort study to examine the relationship between cumulative duration of use of the antiarrhythmic drug amiodarone and the risk of thyroid dysfunction. We also used these methods with a conditional logistic regression model in a nested case-control study to examine the relationship between cumulative duration of use of bisphosphonate medication and the risk of atypical femur fracture.

RESULTS

Using a cohort design and a Cox proportional hazards model, we found a non-linear relationship between cumulative duration of use of the antiarrhythmic drug amiodarone and the risk of thyroid dysfunction. The risk initially increased rapidly with increasing cumulative use. However, as cumulative duration of use increased, the rate of increase in risk attenuated and eventually levelled off. Using a nested case-control design and a conditional logistic regression model, we found evidence of a linear relationship between duration of use of bisphosphonate medication and risk of atypical femur fractures.

CONCLUSIONS

Fractional polynomials allow one to model the relationship between cumulative duration of medication use and adverse outcomes.

摘要

目的

确定暴露于某因素的累积时长与不良结局风险之间的关系性质,是环境与职业流行病学、公共卫生及临床医学中的一个重要问题。Cox比例风险回归模型可纳入随时间变化的协变量。一类重要的连续型随时间变化协变量是表示暴露累积时长的变量。

方法

我们使用分数多项式方法来描述暴露累积时长与不良结局之间的关联。我们将这些方法应用于一项队列研究,以检验抗心律失常药物胺碘酮的累积使用时长与甲状腺功能障碍风险之间的关系。我们还在一项巢式病例对照研究中,将这些方法与条件逻辑回归模型一起使用,以检验双膦酸盐药物的累积使用时长与非典型股骨骨折风险之间的关系。

结果

采用队列设计和Cox比例风险模型,我们发现抗心律失常药物胺碘酮的累积使用时长与甲状腺功能障碍风险之间存在非线性关系。风险最初随着累积使用量的增加而迅速上升。然而,随着累积使用时长的增加,风险的上升速率减缓,最终趋于平稳。采用巢式病例对照设计和条件逻辑回归模型,我们发现双膦酸盐药物的使用时长与非典型股骨骨折风险之间存在线性关系的证据。

结论

分数多项式使人们能够对药物使用的累积时长与不良结局之间的关系进行建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0915/4230473/f5bc05daa0eb/pds0023-0819-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验