Morais Frida Mariana, Buchholz Friederike, Maskow Thomas
Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany.
Methods Mol Biol. 2014;1147:267-75. doi: 10.1007/978-1-4939-0467-9_19.
Any growth or bioconversion in biofilms is accompanied by the release of heat. The heat (in J) is tightly related to the stoichiometry of the respective process via law of Hess, and the heat production rate (in W or J/s) is additionally related to the process kinetics. This heat and the heat production rate can nowadays be measured by modern calorimetry with extremely high sensitivity. Flow-through calorimetry allows the measurement of bioprocesses in biofilms in real time, without the need of invasive sample preparation and disturbing of biofilm processes. Furthermore, it can be applied for long-term measurements and is even applicable to turbid media. Chip or miniaturized calorimeters have the additional advantages of extremely short thermal equilibration times and the requirement of very small amounts of media and chemicals. The precision of flow-through chip calorimeters (about 3 mW/L) allows the detection of early stages of biofilm development (about 10(5) bacteria cm(-2)).
生物膜中的任何生长或生物转化都会伴随着热量的释放。根据盖斯定律,热量(单位:焦耳)与相应过程的化学计量紧密相关,而产热速率(单位:瓦特或焦耳每秒)还与过程动力学相关。如今,这种热量和产热速率可以通过具有极高灵敏度的现代量热法进行测量。流通式量热法能够实时测量生物膜中的生物过程,无需进行侵入性样品制备,也不会干扰生物膜过程。此外,它可用于长期测量,甚至适用于浑浊介质。芯片或小型量热计还具有热平衡时间极短以及所需介质和化学物质极少的额外优势。流通式芯片量热计的精度(约为3毫瓦/升)能够检测生物膜发育的早期阶段(约10⁵个细菌/平方厘米)。