Roberts Michael D, Toedebusch Ryan G, Wells Kevin D, Company Joseph M, Brown Jacob D, Cruthirds Clayton L, Heese Alexander J, Zhu Conan, Rottinghaus George E, Childs Thomas E, Booth Frank W
Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
J Physiol. 2014 May 15;592(10):2119-35. doi: 10.1113/jphysiol.2013.268805. Epub 2014 Mar 24.
We compared the nucleus accumbens (NAc) transcriptomes of generation 8 (G8), 34-day-old rats selectively bred for low (LVR) versus high voluntary running (HVR) behaviours in rats that never ran (LVR(non-run) and HVR(non-run)), as well as in rats after 6 days of voluntary wheel running (LVR(run) and HVR(run)). In addition, the NAc transcriptome of wild-type Wistar rats was compared. The purpose of this transcriptomics approach was to generate testable hypotheses as to possible NAc features that may be contributing to running motivation differences between lines. Ingenuity Pathway Analysis and Gene Ontology analyses suggested that 'cell cycle'-related transcripts and the running-induced plasticity of dopamine-related transcripts were lower in LVR versus HVR rats. From these data, a hypothesis was generated that LVR rats might have less NAc neuron maturation than HVR rats. Follow-up immunohistochemistry in G9-10 LVR(non-run) rats suggested that the LVR line inherently possessed fewer mature medium spiny (Darpp-32-positive) neurons (P < 0.001) and fewer immature (Dcx-positive) neurons (P < 0.001) than their G9-10 HVR counterparts. However, voluntary running wheel access in our G9-10 LVRs uniquely increased their Darpp-32-positive and Dcx-positive neuron densities. In summary, NAc cellularity differences and/or the lack of running-induced plasticity in dopamine signalling-related transcripts may contribute to low voluntary running motivation in LVR rats.
我们比较了第8代(G8)、34日龄大鼠伏隔核(NAc)的转录组,这些大鼠是针对低自愿跑步(LVR)与高自愿跑步(HVR)行为进行选择性培育的,包括从未跑步的大鼠(LVR(未跑步)和HVR(未跑步)),以及自愿跑步6天后的大鼠(LVR(跑步)和HVR(跑步))。此外,还比较了野生型Wistar大鼠的NAc转录组。这种转录组学方法的目的是生成可检验的假设,以探究可能导致品系间跑步动机差异的NAc特征。 Ingenuity通路分析和基因本体分析表明,与“细胞周期”相关的转录本以及多巴胺相关转录本的跑步诱导可塑性在LVR大鼠中低于HVR大鼠。基于这些数据,我们提出了一个假设,即LVR大鼠的NAc神经元成熟度可能低于HVR大鼠。对G9 - 10代LVR(未跑步)大鼠进行的后续免疫组织化学分析表明,与G9 - 10代HVR大鼠相比,LVR品系固有地拥有更少的成熟中型棘状(Darpp - 32阳性)神经元(P < 0.001)和更少的未成熟(Dcx阳性)神经元(P < 0.001)。然而,我们的G9 - 10代LVR大鼠中,自愿使用跑步轮独特地增加了它们的Darpp - 32阳性和Dcx阳性神经元密度。总之,NAc细胞数量差异和/或多巴胺信号相关转录本中缺乏跑步诱导的可塑性可能导致LVR大鼠的低自愿跑步动机。