Richardson R W, Nossal N G
Section on Nucleic Acid Biochemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.
J Biol Chem. 1989 Mar 15;264(8):4732-9.
The bacteriophage T4 gene 41 protein is a 5' to 3' DNA helicase which unwinds DNA ahead of the growing replication fork and, together with the T4 gene 61 protein, also functions as a primase to initiate DNA synthesis on the lagging strand. Proteolytic cleavage by trypsin approximately 20 amino acids from the COOH terminus of the 41 protein produces 41T, a 51,500-dalton fragment (possibly still associated with small COOH-terminal fragments) which still retains the ssDNA-stimulated GTPase (ATPase) activity, the 61 protein-stimulated DNA helicase activity, and the ability to act with 61 protein to synthesize pentaribonucleotide primers. In the absence of the T4 gene 32 ssDNA binding protein, the primase-helicase composed of the tryptic fragment (41T) and 61 proteins efficiently primes DNA synthesis on circular ssDNA templates by the T4 DNA polymerase and the three T4 polymerase accessory proteins. In contrast, the 41T protein is defective as a helicase or a primase component on 32 protein-covered DNA. Thus, unlike the intact protein, 41T does not support RNA-dependent DNA synthesis on 32 protein-covered ssDNA and does not stimulate strand displacement DNA synthesis on a nicked duplex DNA template. High concentrations of 32 protein strongly inhibit RNA primer synthesis with either 41 T or intact 41 protein. The 44/62 and 45 polymerase accessory proteins (and even the 44/62 proteins to some extent) substantially reverse the 32 protein inhibition of RNA primer synthesis with intact 41 protein but not with 41T protein. We propose that the COOH-terminal region of the 41 protein is required for its interaction with the T4 polymerase accessory proteins, permitting the synthesis and utilization of RNA primers and helicase function within the T4 replication complex. When this region is altered, as in 41T protein, the protein is unable to assemble a functional primase-helicase in the replication complex. An easy and rapid purification of T4 41 protein produced by a plasmid encoding this gene (Hinton, D. M., Silver, L. L., and Nossal, N. G. (1985) J. Biol. Chem. 260, 12851-12857) is also described.
噬菌体T4基因41蛋白是一种5'至3' DNA解旋酶,它在不断增长的复制叉前方解开DNA,并与T4基因61蛋白一起,还作为引发酶在滞后链上启动DNA合成。用胰蛋白酶从41蛋白的COOH末端大约20个氨基酸处进行蛋白水解切割产生41T,这是一个51,500道尔顿的片段(可能仍与小的COOH末端片段相关联),它仍然保留单链DNA刺激的GTP酶(ATP酶)活性、61蛋白刺激的DNA解旋酶活性以及与61蛋白一起作用合成五聚核糖核苷酸引物的能力。在没有T4基因32单链DNA结合蛋白的情况下,由胰蛋白酶片段(41T)和61蛋白组成的引发酶 - 解旋酶能通过T4 DNA聚合酶和三种T4聚合酶辅助蛋白在环状单链DNA模板上有效地引发DNA合成。相比之下,41T蛋白在被32蛋白覆盖的DNA上作为解旋酶或引发酶成分存在缺陷。因此,与完整蛋白不同,41T不支持在被32蛋白覆盖的单链DNA上进行RNA依赖性DNA合成,也不刺激带切口的双链DNA模板上的链置换DNA合成。高浓度的32蛋白强烈抑制用41T或完整41蛋白进行的RNA引物合成。44/62和45聚合酶辅助蛋白(甚至在某种程度上44/62蛋白)能显著逆转32蛋白对用完整41蛋白进行RNA引物合成的抑制作用,但对41T蛋白则不能。我们提出41蛋白的COOH末端区域是其与T4聚合酶辅助蛋白相互作用所必需的,这允许在T4复制复合物内合成和利用RNA引物以及解旋酶功能。当该区域发生改变时,如在41T蛋白中,该蛋白无法在复制复合物中组装功能性的引发酶 - 解旋酶。本文还描述了一种通过编码该基因的质粒生产T4 41蛋白的简便快速纯化方法(Hinton, D. M., Silver, L. L., and Nossal, N. G. (1985) J. Biol. Chem. 260, 12851 - 12857)。