Hinton D M, Nossal N G
J Biol Chem. 1987 Aug 5;262(22):10873-8.
The bacteriophage T4 41 and 61 proteins function as a primase-helicase which in vitro both unwinds double-stranded DNA and synthesizes the pentaribonucleotides used to initiate DNA synthesis on the lagging strand. We demonstrate that 61 protein alone possesses a weak DNA template-dependent oligomer synthesizing activity, whose products differ in size and nucleotide specificity from those made by the 61 and 41 proteins together. We have previously shown that the 61 and 41 proteins make primarily ribonucleotide pentamers of the sequence pppApC(pN)3, although some pentamers beginning with G were also detected on phi X174 single-stranded DNA. The pentamers pppApC(pN)3 have also been shown to initiate T4 DNA chains in vivo (Kurosawa, Y., and Okazaki, T. (1979) J. Mol. Biol. 135, 841-861). We now show that in contrast, the major products made by 61 protein alone on phi X174 DNA with [alpha-32P]CTP and the other three ribonucleoside triphosphates are not pentamers, but the dimers pppApC and pppGpC. In addition, minor amounts of products from 3 to approximately 45 nucleotides in length are also synthesized. Unlike the 61/41 protein reaction, 61 protein alone can substitute dATP or dGTP for ATP or GTP. Addition of 41 protein greatly stimulates oligomer synthesis, especially the synthesis of products made with ATP and CTP and products 5 nucleotides in length. Thus, both 61 and 41 proteins are needed to obtain efficient synthesis of the biologically relevant pentamers pppApC(pN)3. We demonstrate that the glucosylated hydroxymethylcytosines present in T4 DNA do not support the initiation of primer synthesis by the 61 protein on this template. With glycosylated hydroxymethyl T4 DNA, pppApC but not pppGpC oligomers are detected. If the T4 DNA is modified by hydroxymethylation but not glucosylation, pppApC and only a trace of pppGpC products are seen. In the accompanying paper (Nossal, N.G., and Hinton, D.M. (1987) J. Biol. Chem. 262, 10879-10885), we examine DNA synthesis primed by 61 protein in the absence of 41 protein.
噬菌体T4的41和61蛋白发挥引发酶 - 解旋酶的功能,在体外它既能解开双链DNA,又能合成用于在滞后链上起始DNA合成的五聚核糖核苷酸。我们证明,单独的61蛋白具有较弱的依赖DNA模板的寡聚物合成活性,其产物在大小和核苷酸特异性上与61和41蛋白共同作用产生的产物不同。我们之前已经表明,61和41蛋白主要合成序列为pppApC(pN)3的核糖核苷酸五聚体,不过在φX174单链DNA上也检测到了一些以G开头的五聚体。五聚体pppApC(pN)3也已被证明在体内可起始T4 DNA链的合成(黑泽洋和冈崎令治,(1979)《分子生物学杂志》135卷,841 - 861页)。我们现在表明,相比之下,单独的61蛋白在含有[α - 32P]CTP和其他三种核糖核苷三磷酸的φX174 DNA上产生的主要产物不是五聚体,而是二聚体pppApC和pppGpC。此外,还合成了少量长度从3到约45个核苷酸的产物。与61/41蛋白反应不同,单独的61蛋白可以用dATP或dGTP替代ATP或GTP。添加41蛋白极大地刺激了寡聚物的合成,尤其是由ATP和CTP合成的产物以及长度为5个核苷酸的产物。因此,需要61和41蛋白两者才能高效合成生物学上相关的五聚体pppApC(pN)3。我们证明,T4 DNA中存在的糖基化羟甲基胞嘧啶不支持61蛋白在此模板上起始引物合成。对于糖基化羟甲基T4 DNA,检测到了pppApC寡聚物,但未检测到pppGpC寡聚物。如果T4 DNA仅被羟甲基化而未被糖基化,则只能看到pppApC产物以及痕量的pppGpC产物。在随附的论文中(诺萨尔,N.G.和辛顿,D.M. (1987)《生物化学杂志》262卷,10879 - 10885页),我们研究了在没有41蛋白的情况下由61蛋白引发的DNA合成。