Neațu Stefan, Maciá-Agulló Juan Antonio, Garcia Hermenegildo
Instituto Universitario de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Av. De los Naranjos s/n, 46022 Valencia, Spain.
Int J Mol Sci. 2014 Mar 25;15(4):5246-62. doi: 10.3390/ijms15045246.
The reduction of carbon dioxide to useful chemicals has received a great deal of attention as an alternative to the depletion of fossil resources without altering the atmospheric CO2 balance. As the chemical reduction of CO2 is energetically uphill due to its remarkable thermodynamic stability, this process requires a significant transfer of energy. Achievements in the fields of photocatalysis during the last decade sparked increased interest in the possibility of using sunlight to reduce CO2. In this review we discuss some general features associated with the photocatalytic reduction of CO2 for the production of solar fuels, with considerations to be taken into account of the photocatalyst design, of the limitations arising from the lack of visible light response of titania, of the use of co-catalysts to overcome this shortcoming, together with several strategies that have been applied to enhance the photocatalytic efficiency of CO2 reduction. The aim is not to provide an exhaustive review of the area, but to present general aspects to be considered, and then to outline which are currently the most efficient photocatalytic systems.
将二氧化碳还原为有用的化学品作为一种在不改变大气中二氧化碳平衡的情况下替代化石资源枯竭的方法,已受到广泛关注。由于二氧化碳具有显著的热力学稳定性,其化学还原过程在能量上是逆向的,因此该过程需要大量的能量转移。过去十年中光催化领域的进展引发了人们对利用阳光还原二氧化碳可能性的更多兴趣。在这篇综述中,我们讨论了与光催化还原二氧化碳以生产太阳能燃料相关的一些一般特征,包括光催化剂设计时需要考虑的因素、二氧化钛缺乏可见光响应所带来的限制、使用助催化剂来克服这一缺点,以及为提高二氧化碳还原光催化效率而应用的几种策略。目的不是对该领域进行详尽的综述,而是呈现需要考虑的一般方面,然后概述目前最有效的光催化系统。