Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
Acc Chem Res. 2022 Apr 5;55(7):966-977. doi: 10.1021/acs.accounts.1c00676. Epub 2022 Mar 1.
Photocatalytic and photoelectrochemical CO reduction of artificial photosynthesis is a promising chemical process to solve resource, energy, and environmental problems. An advantage of artificial photosynthesis is that solar energy is converted to chemical products using abundant water as electron and proton sources. It can be operated under ambient temperature and pressure. Especially, photocatalytic CO reduction employing a powdered material would be a low-cost and scalable system for practical use because of simplicity of the total system and simple mass-production of a photocatalyst material.In this Account, single particulate photocatalysts, Z-scheme photocatalysts, and photoelectrodes are introduced for artificial photosynthetic CO reduction. It is indispensable to use water as an electron donor (i.e., reasonable O evolution) but not to use a sacrificial reagent of a strong electron donor, for achievement of the artificial photosynthetic CO reduction accompanied by Δ > 0. Confirmations of O evolution, a ratio of reacted e to h estimated from obtained products, a turnover number, and a carbon source of a CO reduction product are discussed as the key points for evaluation of photocatalytic and photoelectrochemical CO reduction.Various metal oxide photocatalysts with wide band gaps have been developed for water splitting under UV light irradiation. However, these bare metal oxide photocatalysts without a cocatalyst do not show high photocatalytic CO reduction activity in an aqueous solution. The issue comes from lack of a reaction site for CO reduction and competitive reaction between water and CO reduction. This raises a key issue to find a cocatalyst and optimize reaction conditions defining this research field. Loading a Ag cocatalyst as a CO reduction site and NaHCO addition for a smooth supply of hydrated CO molecules as reactant are beneficial for efficient photocatalytic CO reduction. Ag/BaLaTiO and Ag/NaTaO:Ba reduce CO to CO as a main reduction reaction using water as an electron donor even in just water and an aqueous NaHCO solution. A Rh-Ru cocatalyst on NaTaO:Sr gives CH with 10% selectivity (Faradaic efficiency) based on the number of reacted electrons in the photocatalytic CO reduction accompanied by O evolution by water oxidation.Visible-light-responsive photocatalyst systems are indispensable for efficient sunlight utilization. Z-scheme systems using CuGaS, (CuGa)ZnS, CuGaInS, and SrTiO:Rh as CO-reducing photocatalyst, BiVO as O-evolving photocatalyst, and reduced graphene oxide (RGO) and Co-complex as electron mediator or without an electron mediator are active for CO reduction using water as an electron donor under visible light irradiation. These metal sulfide photocatalysts have the potential to take part in Z-scheme systems for artificial photosynthetic CO reduction, even though their ability to extract electrons from water is insufficient.A photoelectrochemical system using a photocathode is also attractive for CO reduction under visible light irradiation. For example, p-type CuGaS, (CuGa)ZnS, CuAgGaS, and SrTiO:Rh function as photocathodes for CO reduction under visible light irradiation. Moreover, introducing a conducting polymer as a hole transporter and surface modification with Ag and ZnS improve photoelectrochemical performance.
人工光合作用中的光催化和光电化学 CO 还原是解决资源、能源和环境问题的一种很有前途的化学过程。人工光合作用的一个优势是,它可以利用丰富的水作为电子和质子源,将太阳能转化为化学产品。它可以在环境温度和压力下运行。特别是,采用粉末材料的光催化 CO 还原对于实际应用来说将是一种低成本且可扩展的系统,因为整个系统简单,并且光催化剂材料的大规模生产简单。
在本报告中,介绍了用于人工光合作用 CO 还原的单颗粒光催化剂、Z 型光催化剂和光电极。使用水作为电子供体(即合理的 O 进化)而不是使用强电子供体的牺牲试剂是必不可少的,以实现伴随着 Δ > 0 的人工光合作用 CO 还原。讨论 O 进化的确认、从获得的产物估计的反应电子与光的比值、周转数和 CO 还原产物的碳源,作为光催化和光电化学 CO 还原评价的关键点。
已经开发了各种具有宽带隙的金属氧化物光催化剂,用于在紫外光照射下进行水分解。然而,这些没有共催化剂的裸金属氧化物光催化剂在水溶液中并不表现出高的光催化 CO 还原活性。问题来自于 CO 还原反应位点的缺乏和水与 CO 还原之间的竞争反应。这提出了一个关键问题,即寻找共催化剂并优化定义该研究领域的反应条件。负载 Ag 共催化剂作为 CO 还原位点,添加 NaHCO₃ 以平稳供应作为反应物的水合 CO 分子,有利于高效光催化 CO 还原。Ag/BaLaTiO 和 Ag/NaTaO:Ba 即使在只有水和水合 NaHCO₃ 溶液的情况下,也能将 CO 还原为 CO,作为主要还原反应,使用水作为电子供体。在水氧化伴随的光催化 CO 还原中,NaTaO:Sr 上的 Rh-Ru 共催化剂以 10%的选择性(基于反应电子数的法拉第效率)产生 CH。
可见光响应的光催化剂系统对于高效利用太阳光必不可少。使用 CuGaS、(CuGa)ZnS、CuGaInS 和 SrTiO:Rh 作为 CO 还原光催化剂、BiVO 作为 O 进化光催化剂、以及还原氧化石墨烯 (RGO) 和 Co 配合物作为电子介体或没有电子介体的 Z 型系统,在可见光照射下使用水作为电子供体,可有效进行 CO 还原。尽管这些金属硫化物光催化剂从水中提取电子的能力不足,但它们具有参与人工光合作用 CO 还原的 Z 型系统的潜力。
使用光电阴极的光电化学系统对于可见光照射下的 CO 还原也很有吸引力。例如,p 型 CuGaS、(CuGa)ZnS、CuAgGaS 和 SrTiO:Rh 可在可见光照射下作为 CO 还原的光电阴极。此外,引入导电聚合物作为空穴传输体并进行 Ag 和 ZnS 的表面修饰可以提高光电化学性能。
J Mater Chem A Mater. 2025-5-20
Angew Chem Int Ed Engl. 2025-4-21
J Am Chem Soc. 2025-4-23
Nat Commun. 2025-2-27