Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
1] Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.
Nat Commun. 2014 Mar 27;5:3529. doi: 10.1038/ncomms4529.
The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.
本研究揭示了锂离子电池中高压操作的镍钴锰酸锂(LiNi(x)Mn(x)Co(1-2x)O2)正极材料所面临的长期挑战。通过相关的集合平均高通量 X 射线吸收光谱和空间分辨电子显微镜和光谱学,我们在此报告了 LiNi(x)Mn(x)Co(1-2x)O2 颗粒表面的结构重构(形成表面还原层,过渡)和化学演变(形成表面反应层)。这些是导致高压循环条件下普遍存在的容量衰减和阻抗增加以及首次循环库仑效率低下的主要原因。研究发现,表面重构表现出强烈的各向异性特征,主要沿着锂离子扩散通道发生。此外,表面反应层由嵌入在复杂有机基质中的氟化锂组成。这项工作为使用互补长度尺度的组合诊断工具研究电池材料中的表面重构和化学演变提供了一个精细的范例。