Suppr超能文献

高压运行期间动力学休眠的富镍层状正极

Kinetically Dormant Ni-Rich Layered Cathode During High-Voltage Operation.

作者信息

Cai Jiyu, Zhou Xinwei, Li Luxi, Yang Zhenzhen, Huang Xingkang, Li Jiantao, Wang Guanyi, Zhu Qijia, Li Tianyi, Sun Cheng-Jun, Zhuo Zengqing, Suzana Ana, Bai Jianming, Gudavalli Ganesh, Karami Niloofar, Chernova Natasha A, Upreti Shailesh, Prevel Brad, Yang Wanli, Liu Yuzi, Xu Wenqian, Chen Yanbin, Song Shunlin, Zhang Xuequan, Wang Li, He Xiangming, Wang Feng, Xu Gui-Liang, Chen Zonghai

机构信息

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA.

出版信息

Adv Mater. 2025 Apr;37(14):e2419253. doi: 10.1002/adma.202419253. Epub 2025 Mar 3.

Abstract

The degradation of Ni-rich cathodes during long-term operation at high voltage has garnered significant attention from both academia and industry. Despite many post-mortem qualitative structural analyses, precise quantification of their individual and coupling contributions to the overall capacity degradation remains challenging. Here, by leveraging multiscale synchrotron X-ray probes, electron microscopy, and post-galvanostatic intermittent titration technique, the thermodynamically irreversible and kinetically reversible capacity loss is successfully deconvoluted in a polycrystalline LiNiMnCoO cathode during long-term charge/discharge cycling in full cell configuration. Contradicting the dramatic capacity loss, the layered structure remains highly alive even after 1000 cycles at 4.6 V while undergoing a three-order of magnitude reduction in the mass transfer kinetics, leading to almost fully recoverable capacity under kinetic-free conditions. Such kinetic dormant behavior after cycling is not simply ascribed to poor chemical diffusion by reconstructed cathode surface but highly synchronizes with the lattice strain evolution stemming from the structural heterogeneity between deeply delithiated layered and degraded rock-salt phases at high voltage. These findings deepen the degradation mechanism of high-voltage cathodes to achieve long-cycling and fast-charging performance.

摘要

富镍阴极在高压下长期运行期间的降解已引起学术界和工业界的广泛关注。尽管进行了许多事后定性结构分析,但精确量化它们对整体容量降解的单独和耦合贡献仍然具有挑战性。在此,通过利用多尺度同步加速器X射线探针、电子显微镜和恒电流间歇滴定技术,在全电池配置下长期充/放电循环过程中,成功地对多晶LiNiMnCoO阴极中热力学不可逆和动力学可逆的容量损失进行了反褶积。与显著的容量损失相反,即使在4.6 V下循环1000次后,层状结构仍然高度完好,同时传质动力学降低了三个数量级,导致在无动力学条件下容量几乎完全可恢复。循环后的这种动力学休眠行为不仅仅归因于重构阴极表面的化学扩散不良,而是与高压下深度脱锂层状相和降解岩盐相之间的结构异质性所导致的晶格应变演化高度同步。这些发现深化了高压阴极实现长循环和快速充电性能的降解机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f830/11983239/8340c17caaee/ADMA-37-2419253-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验