Suppr超能文献

能源正收益的生活污水处理:厌氧和光养技术的作用。

Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

机构信息

University of Illinois at Urbana-Champaign - Civil & Environmental Engineering, 205 N. Mathews Avenue 3221 Newmark Civil Engineering Lab, Urbana, Illinois 61801, USA.

出版信息

Environ Sci Process Impacts. 2014 May;16(6):1204-22. doi: 10.1039/c3em00711a.

Abstract

The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic bioprocesses in energy positive wastewater management is discussed.

摘要

如果采用厌氧技术进行有机碳氧化和利用光养技术进行营养回收,那么污水处理的负能量平衡就可以得到扭转。为了通过厌氧和光养生物技术实现污水处理的能量正效益,我们进行了全面的文献综述和分析,重点关注能量产生(以每人每天 kJ 和处理每立方米废水的 kJ 计)、能量消耗和处理效果。本综述中包含的厌氧技术有厌氧折流板反应器(ABR)、厌氧膜生物反应器(AnMBR)、厌氧流化床反应器(AFB)、上流式厌氧污泥床(UASB)、厌氧序批式反应器(ASBR)、微生物电解池(MEC)和微生物燃料电池(MFC)。光养技术包括高效藻类塘(HRAP)、光生物反应器(PBR)、搅拌槽反应器、污水稳定塘(WSP)和藻床洗涤器(ATS)。厌氧技术的平均能量回收效率为 1.6%(MFC)至 47.5%(ABR)。如果包括每种技术的典型化学需氧量(COD)去除百分比,这个范围大致相当于每人每天 40-1200 kJ 或处理每立方米废水 110-3300 kJ。光养技术的平均生物能源原料产量为每人每天 1200-4700 kJ 或每立方米 3400-13000 kJ(超过厌氧技术,有时也超过进水有机碳的能量含量),但可用能源的产生取决于下游转化为燃料的情况。能量消耗分析表明,新兴技术实现污水处理的能量正效益,需要大幅降低机械搅拌和气体曝气的寄生损耗。确定了生产能源技术的技术目标和关键障碍,并讨论了厌氧和光养生物过程集成在污水处理的能量正效益管理中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验