Suppr超能文献

在适度大且不连续的不规则格网上对有噪声的空间发生率进行贝叶斯分层建模。

Bayesian hierarchical modelling of noisy spatial rates on a modestly large and discontinuous irregular lattice.

作者信息

MacNab Ying C, Read Simon, Strong Mark, Pearson Tim, Maheswaran Ravi, Goyder Elizabeth

机构信息

Epidemiology and Biostatistics, School of Population and Public Health, University of British Columbia, Vancouver, Canada British Columbia Child & Family Research Institute, Vancouver, Canada

Public Health GIS Unit, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK.

出版信息

Stat Methods Med Res. 2014 Dec;23(6):552-71. doi: 10.1177/0962280214527386. Epub 2014 Mar 26.

Abstract

We present Bayesian hierarchical spatial model development motivated from a recent analysis of noisy small area response rate data, named the Booster data. The Booster data are postcode-level aggregates from a recent mail-out recruitment for a physical exercise intervention in deprived urban neighbourhoods in Sheffield, UK. Bayesian hierarchical Bernoulli-binomial spatial mixture zero-inflated Binomial models were developed for modelling overdispersion and for separation of systematic and random variations in the noisy and mostly low crude response rates. We present methods that enabled us to explore the underlying spatial rate variation, clustering of low or high response rate areas and neighbourhood characteristics that were associated with variations and patterns of invitation mail-outs, zero-response and response rates. Three spatial prior formulations, the intrinsic conditional autoregressive or (iCAR), the Besag-York-Mollié (BYM) and the modified BYM models, were explored for their performance on modelling sparse data on a modestly large and discontinuous irregular lattice. An in-depth Bayesian analysis of the Booster data is presented, with the resulting posterior estimation and inference implemented via Markov chain Monte Carlo simulation in WinBUGS. With increasing availability of spatial data referenced at fine spatial scales such as the postcode, the sparse-data situation and the Bayesian models and methods discussed herein should have considerable relevance to small area disease and health mapping and to spatial regression.

摘要

我们展示了基于近期对噪声小区域响应率数据(称为“助推器数据”)的分析而开发的贝叶斯分层空间模型。助推器数据是英国谢菲尔德贫困城市社区近期体育锻炼干预邮件招募的邮政编码级汇总数据。为了对过度离散进行建模以及分离噪声且大多为低原始响应率中的系统变化和随机变化,开发了贝叶斯分层伯努利 - 二项式空间混合零膨胀二项式模型。我们提出了一些方法,使我们能够探索潜在的空间率变化、低或高响应率区域的聚类以及与邀请邮件的变化和模式、零响应和响应率相关的社区特征。研究了三种空间先验公式,即内在条件自回归(iCAR)、贝萨格 - 约克 - 莫利(BYM)和改进的BYM模型,以评估它们在适度大且不连续不规则格点上对稀疏数据建模的性能。本文展示了对助推器数据的深入贝叶斯分析,并通过WinBUGS中的马尔可夫链蒙特卡罗模拟实现了后验估计和推断。随着邮政编码等精细空间尺度参考的空间数据可用性不断提高,本文讨论的稀疏数据情况以及贝叶斯模型和方法应该与小区域疾病和健康绘图以及空间回归具有相当的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验