Division of Epidemiology and Biostatistics, School of Population and Public Health, University of British Columbia, Canada.
Stat Methods Med Res. 2011 Feb;20(1):49-68. doi: 10.1177/0962280210371561. Epub 2010 Jun 14.
We discuss the nature of Gaussian Markov random fields (GMRFs) as they are typically formulated via full conditionals, also named conditional autoregressive or CAR formulations, to represent small area relative risks ensemble priors within a Bayesian hierarchical model framework for statistical inference in disease mapping and spatial regression. We present a partial review on GMRF/CAR and multivariate GMRF prior formulations in univariate and multivariate disease mapping models and communicate insights into various prior characteristics for representing disease risks variability and 'spatial interaction.' We also propose convolution prior modifications to the well known BYM model for attainment of identifiability and Bayesian robustness in univariate and multivariate disease mapping and spatial regression. Several illustrative examples of disease mapping and spatial regression are presented.
我们讨论了高斯马尔可夫随机场(GMRF)的性质,因为它们通常通过全条件概率来表示,也称为条件自回归或 CAR 公式,以便在贝叶斯层次模型框架内代表小区域相对风险集合先验,用于疾病制图和空间回归中的统计推断。我们对 GMRF/CAR 和多元 GMRF 先验公式在单变量和多变量疾病制图模型中的应用进行了综述,并对各种代表疾病风险变化和“空间相互作用”的先验特征进行了交流。我们还针对著名的 BYM 模型提出了卷积先验修改,以在单变量和多变量疾病制图和空间回归中实现可识别性和贝叶斯稳健性。还提出了几个疾病制图和空间回归的实例。