Suppr超能文献

双壳类的代谢优势比腕足动物多样性衰退早了超过 1.5 亿年。

Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years.

机构信息

Department of Geological and Environmental Sciences, Stanford University, , 450 Serra Mall, Building 320, Stanford, CA 94305, USA, National Evolutionary Synthesis Center (NESCent), , 2024 West Main St., Durham, NC 27705, USA.

出版信息

Proc Biol Sci. 2014 Mar 26;281(1783):20133122. doi: 10.1098/rspb.2013.3122. Print 2014 May 22.

Abstract

Brachiopods and bivalves feed in similar ways and have occupied the same environments through geological time, but brachiopods were far more diverse and abundant in the Palaeozoic whereas bivalves dominate the post-Palaeozoic, suggesting a transition in ecological dominance 250 Ma. However, diversity and abundance data alone may not adequately describe key changes in ecosystem function, such as metabolic activity. Here, we use newly compiled body size data for 6066 genera of bivalves and brachiopods to calculate metabolic rates and revisit this question from the perspective of energy use, finding that bivalves already accounted for a larger share of metabolic activity in Palaeozoic oceans. We also find that the metabolic activity of bivalves has increased by more than two orders of magnitude over this interval, whereas brachiopod metabolic activity has declined by more than 50%. Consequently, the increase in bivalve energy metabolism must have occurred via the acquisition of new food resources rather than through the displacement of brachiopods. The canonical view of a mid-Phanerozoic transition from brachiopod to bivalve dominance results from a focus on taxonomic diversity and numerical abundance as measures of ecological importance. From a metabolic perspective, the oceans have always belonged to the clams.

摘要

腕足动物和双壳动物以相似的方式进食,并在地质时间内占据相同的环境,但腕足动物在古生代的多样性和丰富度远远超过双壳动物,而双壳动物在古生代之后占据主导地位,这表明在 2.5 亿年前生态优势发生了转变。然而,仅多样性和丰富度数据可能无法充分描述生态系统功能的关键变化,例如代谢活性。在这里,我们使用新汇编的 6066 属双壳类和腕足类动物的体型数据来计算代谢率,并从能量利用的角度重新审视这个问题,发现双壳类动物在古生代海洋中已经占据了更大的代谢活动份额。我们还发现,在这段时间内,双壳类动物的代谢活性增加了两个以上数量级,而腕足类动物的代谢活性下降了 50%以上。因此,双壳类动物能量代谢的增加一定是通过获取新的食物资源而不是通过取代腕足类动物来实现的。中生代中期从腕足动物到双壳动物优势的转变的典型观点源于将分类多样性和数量丰富度作为生态重要性的衡量标准。从代谢的角度来看,海洋一直属于双壳类动物。

相似文献

1
Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years.
Proc Biol Sci. 2014 Mar 26;281(1783):20133122. doi: 10.1098/rspb.2013.3122. Print 2014 May 22.
3
Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis.
PLoS One. 2019 Sep 5;14(9):e0221887. doi: 10.1371/journal.pone.0221887. eCollection 2019.
4
Mass occurrence of seep-specific bivalves in the oldest-known cold seep metazoan community.
Sci Rep. 2017 Oct 30;7(1):14292. doi: 10.1038/s41598-017-14732-y.
6
Marine Biodiversity and Geographic Distributions Are Independent on Large Scales.
Curr Biol. 2020 Jan 6;30(1):115-121.e5. doi: 10.1016/j.cub.2019.10.065. Epub 2019 Dec 12.
7
Evolutionary contingency in lingulid brachiopods across mass extinctions.
Curr Biol. 2023 Apr 24;33(8):1565-1572.e3. doi: 10.1016/j.cub.2023.02.038. Epub 2023 Mar 8.
8
10
Dynamic and synchronous changes in metazoan body size during the Cambrian Explosion.
Sci Rep. 2020 Apr 22;10(1):6784. doi: 10.1038/s41598-020-63774-2.

引用本文的文献

1
Morphological innovation did not drive diversification in Mesozoic-Cenozoic brachiopods.
Nat Ecol Evol. 2024 Oct;8(10):1948-1958. doi: 10.1038/s41559-024-02491-9. Epub 2024 Jul 25.
2
4
Energetic constraints on body-size niches in a resource-limited marine environment.
Biol Lett. 2022 Aug;18(8):20220112. doi: 10.1098/rsbl.2022.0112. Epub 2022 Aug 17.
5
Phosphatized adductor muscle remains in a Cenomanian limid bivalve from Villers-sur-Mer (France).
Swiss J Palaeontol. 2022;141(1):10. doi: 10.1186/s13358-022-00252-4. Epub 2022 Jun 3.
8
Chamber volume development, metabolic rates, and selective extinction in cephalopods.
Sci Rep. 2020 Feb 19;10(1):2950. doi: 10.1038/s41598-020-59748-z.
9
Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis.
PLoS One. 2019 Sep 5;14(9):e0221887. doi: 10.1371/journal.pone.0221887. eCollection 2019.
10
Metabolic rates, climate and macroevolution: a case study using Neogene molluscs.
Proc Biol Sci. 2018 Aug 22;285(1885):20181292. doi: 10.1098/rspb.2018.1292.

本文引用的文献

1
A cold, hard look at ancient oxygen.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14514-5. doi: 10.1073/pnas.1313197110. Epub 2013 Aug 23.
2
Dispersal, environmental niches and oceanic-scale turnover in deep-sea bivalves.
Proc Biol Sci. 2012 May 22;279(1735):1993-2002. doi: 10.1098/rspb.2011.2166. Epub 2011 Dec 21.
3
Brachiopods versus Mussels: Competition, Predation, and Palatability.
Science. 1985 Jun 28;228(4707):1527-8. doi: 10.1126/science.228.4707.1527.
4
Tiering in suspension-feeding communities on soft substrata throughout the phanerozoic.
Science. 1982 Apr 9;216(4542):173-4. doi: 10.1126/science.216.4542.173.
5
Similarity of mammalian body size across the taxonomic hierarchy and across space and time.
Am Nat. 2004 May;163(5):672-91. doi: 10.1086/382898. Epub 2004 Apr 19.
6
Effects of size and temperature on metabolic rate.
Science. 2001 Sep 21;293(5538):2248-51. doi: 10.1126/science.1061967.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验