Gubaev Airat, Klostermeier Dagmar
Institute for Physical Chemistry, University of Muenster, Corrensstrasse 30, D-48149 Muenster, Germany.
Institute for Physical Chemistry, University of Muenster, Corrensstrasse 30, D-48149 Muenster, Germany.
DNA Repair (Amst). 2014 Apr;16:23-34. doi: 10.1016/j.dnarep.2014.01.011. Epub 2014 Feb 22.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling. Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.
DNA拓扑异构酶在细胞内将不同的DNA拓扑异构体进行相互转换。它们催化DNA超螺旋的引入或松弛,以及连环和解连环。I型拓扑异构酶家族的成员切割其双链DNA底物的一条链,而II型家族的酶切割两条DNA链。细菌DNA促旋酶是一种II型拓扑异构酶,在依赖ATP的反应中催化将负超螺旋引入DNA。促旋酶在人类中不存在,是治疗细菌和寄生虫感染的一个有吸引力的药物靶点。促旋酶引起的DNA超螺旋被认为是通过链穿越机制发生的,其中双链DNA底物的一个片段穿过第二个片段中的(瞬时)断裂处。这种机制需要三个蛋白质界面(即所谓的门)的协同打开和关闭,以确保链穿越向负超螺旋的方向性。单分子荧光共振能量转移实验非常适合研究DNA拓扑异构酶催化循环过程中的构象变化。在这篇综述中,我们总结了目前关于促旋酶中由DNA和核苷酸诱导的构象变化级联的知识,这些变化导致DNA的链穿越和负超螺旋。我们讨论了这些构象变化如何将ATP水解与促旋酶中的DNA超螺旋偶联,以及如何调节协同门打开和关闭的共同机制原理,以允许不同的II型拓扑异构酶催化不同的反应。