Laboratoire Kastler Brossel, École Normale Supérieure, Université Pierre et Marie Curie-Paris 6, CNRS, 24 Rue Lhomond, 75005 Paris, France.
Science. 2014 Apr 11;344(6180):180-3. doi: 10.1126/science.1248905. Epub 2014 Mar 27.
Multiparticle entanglement enables quantum simulations, quantum computing, and quantum-enhanced metrology. Yet, there are few methods to produce and measure such entanglement while maintaining single-qubit resolution as the number of qubits is scaled up. Using atom chips and fiber-optical cavities, we have developed a method based on nondestructive collective measurement and conditional evolution to create symmetric entangled states and perform their tomography. We demonstrate creation and analysis of entangled states with mean atom numbers up to 41 and experimentally prove multiparticle entanglement. Our method is independent of atom number and should allow generalization to other entangled states and other physical implementations, including circuit quantum electrodynamics.
多粒子纠缠使量子模拟、量子计算和量子增强计量学成为可能。然而,在增加量子比特数量的同时,很少有方法能够产生和测量这种纠缠,同时保持单量子比特分辨率。我们使用原子芯片和光纤腔,开发了一种基于无损集体测量和条件演化的方法,以创建对称纠缠态并对其进行层析成像。我们演示了纠缠态的产生和分析,平均原子数高达 41,并实验证明了多粒子纠缠。我们的方法与原子数无关,应该可以推广到其他纠缠态和其他物理实现,包括电路量子电动力学。