Universidad Nacional del Sur, Departamento de Química INQUISUR, Avenida Alem 1253, 8000-Bahía Blanca, Argentina.
J Phys Condens Matter. 2014 Apr 16;26(15):155104. doi: 10.1088/0953-8984/26/15/155104. Epub 2014 Mar 27.
We report on the dynamic and structural characterization of lithium metasilicate Li2SiO3, a network-forming ionic glass, by means of molecular dynamics simulations. The system is characterized by a network of SiO4 tetrahedra disrupted by Li ions which diffuse through the network. Measures of mean square displacement and the diffusion constant of Si and O atoms allow us to identify the mode-coupling temperature, Tc ≈ 1500 K. At a much lower temperature, a change in the slope of the specific volume versus temperature singles out the glass transition at Tg ≈ 1000 K, the temperature below which the system goes out of equilibrium. We find signatures of both dynamical temperatures in structural order parameters related to the orientation of the tetrahedra. At lower temperatures we find that a set of order parameters which measure the relative orientation of neighbouring tetrahedra cease to increase and stay constant below Tc. Nevertheless, the bond orientational order parameter, which in this system measures local tetrahedral order, is found to continue growing below Tc until Tg, below which it remains constant. Although these structural signatures of the two dynamical temperatures do not imply any real thermodynamic transition in terms of the order parameters, they do give insight into the relaxation processes that occur between Tc and Tg, in particular they allow us to characterize the nature of the crossover happening around Tc.
我们通过分子动力学模拟报告了锂硅酸钠 Li2SiO3 的动力学和结构特征,Li2SiO3 是一种形成网络的离子玻璃。该系统的特征是由 Li 离子破坏的 SiO4 四面体网络,Li 离子在网络中扩散。Si 和 O 原子的均方位移和扩散常数的测量结果使我们能够确定模式耦合温度 Tc ≈ 1500 K。在低得多的温度下,比热随温度的斜率变化会在玻璃转变温度 Tg ≈ 1000 K 处标记出玻璃转变,低于该温度系统就会失去平衡。我们在与四面体取向相关的结构序参量中找到了两种动力学温度的特征。在较低的温度下,我们发现一组测量相邻四面体相对取向的序参量在 Tc 以下停止增加并保持不变。然而,在这个系统中,衡量局部四面体有序的键取向序参量被发现继续在 Tc 以下增长,直到 Tg,在 Tg 以下它保持不变。尽管这两种动力学温度的结构特征并不意味着在序参量方面存在任何真正的热力学转变,但它们确实深入了解了 Tc 和 Tg 之间发生的弛豫过程,特别是它们使我们能够描述 Tc 附近发生的交叉现象的性质。