Suppr超能文献

膜兴奋性的调节:聚焦于电压门控钠电导

Regulation of membrane excitability: a convergence on voltage-gated sodium conductance.

作者信息

Lin Wei-Hsiang, Baines Richard A

机构信息

Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.

出版信息

Mol Neurobiol. 2015 Feb;51(1):57-67. doi: 10.1007/s12035-014-8674-0. Epub 2014 Mar 29.

Abstract

The voltage-gated sodium channel (Nav) plays a key role in regulation of neuronal excitability. Aberrant regulation of Nav expression and/or function can result in an imbalance in neuronal activity which can progress to epilepsy. Regulation of Nav activity is achieved by coordination of a multitude of mechanisms including RNA alternative splicing and translational repression. Understanding of these regulatory mechanisms is complicated by extensive genetic redundancy: the mammalian genome encodes ten Navs. By contrast, the genome of the fruitfly, Drosophila melanogaster, contains just one Nav homologue, encoded by paralytic (DmNa v ). Analysis of splicing in DmNa v shows variants exhibit distinct gating properties including varying magnitudes of persistent sodium current (INaP). Splicing by Pasilla, an identified RNA splicing factor, alters INaP magnitude as part of an activity-dependent mechanism. Enhanced INaP promotes membrane hyperexcitability that is associated with seizure-like behaviour in Drosophila. Nova-2, a mammalian Pasilla homologue, has also been linked to splicing of Navs and, moreover, mouse gene knockouts display seizure-like behaviour.Expression level of Navs is also regulated through a mechanism of translational repression in both flies and mammals. The translational repressor Pumilio (Pum) can bind to Na v transcripts and repress the normal process of translation, thus regulating sodium current (INa) density in neurons. Pum2-deficient mice exhibit spontaneous EEG abnormalities. Taken together, aberrant regulation of Nav function and/or expression is often epileptogenic. As such, a better understanding of regulation of membrane excitability through RNA alternative splicing and translational repression of Navs should provide new leads to treat epilepsy.

摘要

电压门控钠通道(Nav)在调节神经元兴奋性方面发挥着关键作用。Nav表达和/或功能的异常调节可导致神经元活动失衡,进而发展为癫痫。Nav活性的调节是通过多种机制的协调实现的,包括RNA可变剪接和翻译抑制。由于广泛的基因冗余,对这些调节机制的理解变得复杂:哺乳动物基因组编码十种Nav。相比之下,果蝇(Drosophila melanogaster)的基因组仅包含一个由paralytic(DmNav)编码的Nav同源物。对DmNav剪接的分析表明,变体表现出不同的门控特性,包括不同大小的持续性钠电流(INaP)。已鉴定的RNA剪接因子Pasilla介导的剪接改变了INaP大小,这是一种活性依赖机制的一部分。增强的INaP促进膜过度兴奋性,这与果蝇的癫痫样行为有关。Nova-2是哺乳动物Pasilla的同源物,也与Nav的剪接有关,此外,小鼠基因敲除显示出癫痫样行为。Nav的表达水平在果蝇和哺乳动物中也通过翻译抑制机制进行调节。翻译抑制因子Pumilio(Pum)可以与Nav转录本结合并抑制正常的翻译过程,从而调节神经元中的钠电流(INa)密度。Pum2缺陷小鼠表现出自发性脑电图异常。综上所述,Nav功能和/或表达的异常调节通常具有致痫性。因此,更好地理解通过RNA可变剪接和Nav的翻译抑制对膜兴奋性的调节,应该为治疗癫痫提供新的线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061f/4309913/5e9879e79e7d/12035_2014_8674_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验