Yan Kestens, Tracie Barnett, Marie-Ève Mathieu, Mélanie Henderson, Jean-Luc Bigras, Benoit Thierry, St-Onge Maxime, Marie Lambert
Université de Montréal Hospital Research Center, Centre de Recherche du CHUM (CRCHUM), Tour St-Antoine S02-340, 850 St-Denis, Montreal, QC, Canada H2X 0A9 ; Social and Preventive Medicine Department, Université de Montréal, Montreal, QC, Canada H3N 1X7.
CHU Sainte-Justine Research Center, Montreal, QC, Canada H3T 1C5 ; Department of Exercise Science, Concordia University, Montreal, QC, Canada H4B 1R6.
Int J Pediatr. 2014;2014:328076. doi: 10.1155/2014/328076. Epub 2014 Jan 6.
Background. While increasing evidence links environments to health behavior, clinicians lack information about patients' physical activity levels and lifestyle environments. We present mobile health tools to collect and use spatio-behavioural lifestyle data for personalized physical activity plans in clinical settings. Methods. The Dyn@mo lifestyle intervention was developed at the Sainte-Justine University Hospital Center to promote physical activity and reduce sedentary time among children with cardiometabolic risk factors. Mobility, physical activity, and heart rate were measured in free-living environments during seven days. Algorithms processed data to generate spatio-behavioural indicators that fed a web-based interactive mapping application for personalised counseling. Proof of concept and tools are presented using data collected among the first 37 participants recruited in 2011. Results. Valid accelerometer data was available for 5.6 (SD = 1.62) days in average, heart rate data for 6.5 days, and GPS data was available for 6.1 (2.1) days. Spatio-behavioural indicators were shared between patients, parents, and practitioners to support counseling. Conclusion. Use of wearable sensors along with data treatment algorithms and visualisation tools allow to better measure and describe real-life environments, mobility, physical activity, and physiological responses. Increased specificity in lifestyle interventions opens new avenues for remote patient monitoring and intervention.
背景。虽然越来越多的证据表明环境与健康行为有关,但临床医生缺乏有关患者身体活动水平和生活方式环境的信息。我们展示了移动健康工具,用于收集和使用时空行为生活方式数据,以制定临床环境中的个性化身体活动计划。方法。圣朱斯汀大学医院中心开发了Dyn@mo生活方式干预措施,以促进有心脏代谢危险因素的儿童进行身体活动并减少久坐时间。在七天的自由生活环境中测量了活动能力、身体活动和心率。算法处理数据以生成时空行为指标,这些指标为基于网络的交互式地图应用程序提供数据,用于个性化咨询。使用2011年招募的首批37名参与者收集的数据展示了概念验证和工具。结果。平均有5.6(标准差=1.62)天可获得有效的加速度计数据,6.5天可获得心率数据,6.1(2.1)天可获得GPS数据。时空行为指标在患者、家长和从业者之间共享,以支持咨询。结论。使用可穿戴传感器以及数据处理算法和可视化工具,可以更好地测量和描述现实生活环境、活动能力、身体活动和生理反应。生活方式干预中更高的特异性为远程患者监测和干预开辟了新途径。