Suppr超能文献

在首次接受阿片类药物处方的个体中预测阿片类药物使用障碍发展的因素:使用商业保险个体数据库进行数学建模

Factors predicting development of opioid use disorders among individuals who receive an initial opioid prescription: mathematical modeling using a database of commercially-insured individuals.

作者信息

Cochran Bryan N, Flentje Annesa, Heck Nicholas C, Van Den Bos Jill, Perlman Dan, Torres Jorge, Valuck Robert, Carter Jean

机构信息

Department of Psychology, Skaggs Building Room 143, The University of Montana, Missoula, MT 59812, United States.

University of California, San Francisco, San Francisco General Hospital, 1001 Potrero Avenue, Suite 7 M, San Francisco, CA 94110, United States.

出版信息

Drug Alcohol Depend. 2014 May 1;138:202-8. doi: 10.1016/j.drugalcdep.2014.02.701. Epub 2014 Mar 12.

Abstract

BACKGROUND

Prescription drug abuse in the United States and elsewhere in the world is increasing at an alarming rate with non-medical opioid use, in particular, increasing to epidemic proportions over the past two decades. It is imperative to identify individuals most likely to develop opioid abuse or dependence to inform large-scale, targeted prevention efforts.

METHODS

The present investigation utilized a large commercial insurance claims database to identify demographic, mental health, physical health, and healthcare service utilization variables that differentiate persons who receive an opioid abuse or dependence diagnosis within two years of filling an opioid prescription (OUDs) from those who do not receive such a diagnosis within the same time frame (non-OUDs).

RESULTS

When compared to non-OUDs, OUDs were more likely to: (1) be male (59.9% vs. 44.2% for non-OUDs) and younger (M=37.9 vs. 47.7); (2) have a prescription history of more opioids (1.7 vs. 1.2), and more days supply of opioids (M=272.5, vs. M=33.2; (3) have prescriptions filled at more pharmacies (M=3.3 per year vs. M=1.3); (4) have greater rates of psychiatric disorders; (5) utilize more medical and psychiatric services; and (6) be prescribed more concomitant medications. A predictive model incorporating these findings was 79.5% concordant with actual OUDs in the data set.

CONCLUSIONS

Understanding correlates of OUD development can help to predict risk and inform prevention efforts.

摘要

背景

在美国及世界其他地区,处方药滥用正以惊人的速度增长,尤其是非医疗用途的阿片类药物使用在过去二十年中已增至流行程度。确定最有可能发生阿片类药物滥用或依赖的个体对于开展大规模、有针对性的预防工作至关重要。

方法

本研究利用一个大型商业保险理赔数据库,确定人口统计学、心理健康、身体健康和医疗服务利用等变量,以区分在开具阿片类药物处方后两年内被诊断为阿片类药物滥用或依赖的人群(阿片类药物使用障碍者)与在同一时间段内未接受此类诊断的人群(非阿片类药物使用障碍者)。

结果

与非阿片类药物使用障碍者相比,阿片类药物使用障碍者更有可能:(1)为男性(59.9%对非阿片类药物使用障碍者的44.2%)且更年轻(平均年龄M = 37.9岁对47.7岁);(2)有更多阿片类药物的处方史(1.7对1.2),以及更多天数的阿片类药物供应量(平均M = 272.5天对M = 33.2天);(3)在更多药店配药(每年平均M = 3.3家对M = 1.3家);(4)患有精神疾病的比例更高;(5)使用更多的医疗和精神科服务;以及(6)同时开具更多的伴随药物。纳入这些研究结果的预测模型与数据集中实际的阿片类药物使用障碍者的一致性为79.5%。

结论

了解阿片类药物使用障碍发展的相关因素有助于预测风险并为预防工作提供信息。

相似文献

10
A Tool to Assess Risk of De Novo Opioid Abuse or Dependence.一种评估阿片类药物新发滥用或依赖风险的工具。
Am J Med. 2016 Jul;129(7):699-705.e4. doi: 10.1016/j.amjmed.2016.02.014. Epub 2016 Mar 9.

引用本文的文献

本文引用的文献

1
Dynamic risk factors in the misuse of opioid analgesics.阿片类镇痛药滥用的动态风险因素。
J Psychosom Res. 2012 Jun;72(6):443-51. doi: 10.1016/j.jpsychores.2012.02.009. Epub 2012 Apr 5.
4
Oxycodone poisoning: not just the 'usual suspects'.羟考酮中毒:不只是“常见的嫌疑犯”。
Addiction. 2011 Jun;106(6):1035-6. doi: 10.1111/j.1360-0443.2011.03395.x.
5
Addiction and dependence in DSM-V.DSM-V 中的成瘾和依赖。
Addiction. 2011 May;106(5):866-7. doi: 10.1111/j.1360-0443.2010.03144.x. Epub 2010 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验