Pitulice Laura, Vilaseca Eudald, Pastor Isabel, Madurga Sergio, Garcés Josep Lluís, Isvoran Adriana, Mas Francesc
Department of Biology-Chemistry, West University of Timisoara, Pestalozzi 16, 300311 Timisoara, Romania(1); University Al.I. Cuza from Iaşi, 11 Carol I, Iasi, Romania(2).
Physical Chemistry Department and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), C/Marti i Franquès, 1, E-08028 Barcelona, Catalonia, Spain.
Math Biosci. 2014 May;251:72-82. doi: 10.1016/j.mbs.2014.03.012. Epub 2014 Mar 26.
We perform Monte Carlo simulations in three-dimensional (3D) lattice in order to study diffusion-controlled and mixed activation-diffusion reactions following an irreversible Michaelis-Menten scheme in crowded media. The simulation data reveal the rate coefficient dependence on time for diffusion-controlled bimolecular reactions developing in three-dimensional media with obstacles, as predicted by fractal kinetics approach. For the cases of mixed activation-diffusion reactions, the fractality of the reaction decreases as the activation control increases. We propose a modified form of the Zipf-Mandelbrot equation to describe the time dependence of the rate coefficient, k(t)=k0(1+t/τ)(-)(h). This equation provides a good description of the fractal regime and it may be split into two terms: one that corresponds to the initial rate constant (k0) and the other one correlated with the kinetics fractality. Additionally, the proposed equation contains and links two limit expressions corresponding to short and large periods of time: k1=k0 (for t≪τ) that relates to classical kinetics and the well-known Kopelman's equation k∼t(-)(h) (for t≫τ) associated to fractal kinetics. The τ parameter has the meaning of a crossover time between these two limiting behaviours. The value of k0 is mainly dependent on the excluded volume and the enzyme-obstacle relative size. This dependence can be explained in terms of the radius of an average confined volume that every enzyme molecule feels, and correlates very well with the crossover length obtained in previous studies of enzyme diffusion in crowding media.
我们在三维晶格中进行蒙特卡罗模拟,以研究在拥挤介质中遵循不可逆米氏方程的扩散控制反应和混合活化-扩散反应。模拟数据揭示了在有障碍物的三维介质中扩散控制的双分子反应的速率系数对时间的依赖性,这与分形动力学方法的预测一致。对于混合活化-扩散反应的情况,随着活化控制的增加,反应的分形性降低。我们提出了齐普夫-曼德布罗特方程的一种修正形式来描述速率系数k(t) = k0(1 + t/τ)^(-h)的时间依赖性。该方程很好地描述了分形区域,并且可以分为两项:一项对应于初始速率常数(k0),另一项与动力学分形性相关。此外,所提出的方程包含并联系了对应于短时间和长时间的两个极限表达式:与经典动力学相关的k1 = k0 (t≪τ)和与分形动力学相关的著名的科佩尔曼方程k∼t^(-h) (t≫τ)。τ参数具有这两种极限行为之间的交叉时间的意义。k0的值主要取决于排除体积和酶与障碍物的相对大小。这种依赖性可以用每个酶分子感受到的平均受限体积的半径来解释,并且与先前在拥挤介质中酶扩散研究中获得的交叉长度非常相关。