Suppr超能文献

拥挤环境中扩散的多尺度建模

Multiscale Modeling of Diffusion in a Crowded Environment.

作者信息

Meinecke Lina

机构信息

Department of Information Technology, Uppsala University, Uppsala, Sweden.

University of California at Irvine, Irvine, CA, USA.

出版信息

Bull Math Biol. 2017 Nov;79(11):2672-2695. doi: 10.1007/s11538-017-0346-6. Epub 2017 Sep 18.

Abstract

We present a multiscale approach to model diffusion in a crowded environment and its effect on the reaction rates. Diffusion in biological systems is often modeled by a discrete space jump process in order to capture the inherent noise of biological systems, which becomes important in the low copy number regime. To model diffusion in the crowded cell environment efficiently, we compute the jump rates in this mesoscopic model from local first exit times, which account for the microscopic positions of the crowding molecules, while the diffusing molecules jump on a coarser Cartesian grid. We then extract a macroscopic description from the resulting jump rates, where the excluded volume effect is modeled by a diffusion equation with space-dependent diffusion coefficient. The crowding molecules can be of arbitrary shape and size, and numerical experiments demonstrate that those factors together with the size of the diffusing molecule play a crucial role on the magnitude of the decrease in diffusive motion. When correcting the reaction rates for the altered diffusion we can show that molecular crowding either enhances or inhibits chemical reactions depending on local fluctuations of the obstacle density.

摘要

我们提出了一种多尺度方法来模拟拥挤环境中的扩散及其对反应速率的影响。生物系统中的扩散通常通过离散空间跳跃过程进行建模,以便捕捉生物系统固有的噪声,这在低拷贝数情况下变得很重要。为了有效地模拟拥挤细胞环境中的扩散,我们根据局部首次退出时间计算这个介观模型中的跳跃速率,该时间考虑了拥挤分子的微观位置,而扩散分子则在更粗的笛卡尔网格上跳跃。然后,我们从所得的跳跃速率中提取宏观描述,其中排除体积效应由具有空间依赖性扩散系数的扩散方程建模。拥挤分子可以具有任意形状和大小,数值实验表明,这些因素与扩散分子的大小一起,对扩散运动减小的幅度起着关键作用。当校正反应速率以适应改变后的扩散时,我们可以表明,分子拥挤根据障碍物密度的局部波动增强或抑制化学反应。

相似文献

1
Multiscale Modeling of Diffusion in a Crowded Environment.
Bull Math Biol. 2017 Nov;79(11):2672-2695. doi: 10.1007/s11538-017-0346-6. Epub 2017 Sep 18.
2
Monte Carlo simulations of enzymatic reactions in crowded media. Effect of the enzyme-obstacle relative size.
Math Biosci. 2014 May;251:72-82. doi: 10.1016/j.mbs.2014.03.012. Epub 2014 Mar 26.
5
Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach.
J Chem Phys. 2017 Mar 28;146(12):124110. doi: 10.1063/1.4978775.
6
Stochastic lattice model of synaptic membrane protein domains.
Phys Rev E. 2017 May;95(5-1):052406. doi: 10.1103/PhysRevE.95.052406. Epub 2017 May 16.
7
Waves in a Stochastic Cell Motility Model.
Bull Math Biol. 2023 Jun 17;85(8):70. doi: 10.1007/s11538-023-01164-1.
8
Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm.
Biophys J. 2008 May 15;94(10):3748-59. doi: 10.1529/biophysj.107.116053. Epub 2008 Jan 30.
9
Computational methods for diffusion-influenced biochemical reactions.
Bioinformatics. 2007 Aug 1;23(15):1969-77. doi: 10.1093/bioinformatics/btm278. Epub 2007 May 30.
10
Macromolecular crowding directs the motion of small molecules inside cells.
J R Soc Interface. 2017 Jun;14(131). doi: 10.1098/rsif.2017.0047.

引用本文的文献

1
Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments.
Chem Rev. 2024 Apr 10;124(7):3932-3977. doi: 10.1021/acs.chemrev.3c00550. Epub 2024 Mar 27.
3
From membrane receptors to protein synthesis and actin cytoskeleton: Mechanisms underlying long lasting forms of synaptic plasticity.
Semin Cell Dev Biol. 2019 Nov;95:120-129. doi: 10.1016/j.semcdb.2019.01.006. Epub 2019 Jan 12.
4
Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches.
Bull Math Biol. 2019 Aug;81(8):2960-3009. doi: 10.1007/s11538-018-0443-1. Epub 2018 May 21.
5
Excluded volume effects in on- and off-lattice reaction-diffusion models.
IET Syst Biol. 2017 Apr;11(2):55-64. doi: 10.1049/iet-syb.2016.0021.

本文引用的文献

1
MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME.
Multiscale Model Simul. 2016;14(2):668-707. doi: 10.1137/15M1013110. Epub 2016 May 3.
2
ANALYSIS AND DESIGN OF JUMP COEFFICIENTS IN DISCRETE STOCHASTIC DIFFUSION MODELS.
SIAM J Sci Comput. 2016;38(1):A55-A83. doi: 10.1137/15M101110X. Epub 2016 Jan 6.
3
Excluded volume effects in on- and off-lattice reaction-diffusion models.
IET Syst Biol. 2017 Apr;11(2):55-64. doi: 10.1049/iet-syb.2016.0021.
4
Molecular finite-size effects in stochastic models of equilibrium chemical systems.
J Chem Phys. 2016 Feb 28;144(8):084101. doi: 10.1063/1.4941583.
5
Simulation of stochastic diffusion via first exit times.
J Comput Phys. 2015 Nov 1;300:862-886. doi: 10.1016/j.jcp.2015.07.065.
7
Stochastic diffusion processes on Cartesian meshes.
J Comput Appl Math. 2016 Mar 1;294:1-11. doi: 10.1016/j.cam.2015.07.035. Epub 2015 Aug 5.
8
Reconciling transport models across scales: The role of volume exclusion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):040701. doi: 10.1103/PhysRevE.92.040701. Epub 2015 Oct 2.
9
Macromolecular crowding creates heterogeneous environments of gene expression in picolitre droplets.
Nat Nanotechnol. 2016 Feb;11(2):191-7. doi: 10.1038/nnano.2015.243. Epub 2015 Oct 26.
10
Mechanisms underlying anomalous diffusion in the plasma membrane.
Curr Top Membr. 2015;75:167-207. doi: 10.1016/bs.ctm.2015.03.002. Epub 2015 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验