College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
1] College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China [2] National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044, China.
Sci Rep. 2014 Mar 31;4:4518. doi: 10.1038/srep04518.
Fabricating hierarchical core-shell nanostructures is currently the subject of intensive research in the electrochemical field owing to the hopes it raises for making efficient electrodes for high-performance supercapacitors. Here, we develop a simple and cost-effective approach to prepare CuO@MnO2 core-shell nanostructures without any surfactants and report their applications as electrodes for supercapacitors. An asymmetric supercapacitor with CuO@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode yields an energy density of 22.1 Wh kg(-1) and a maximum power density of 85.6 kW kg(-1); the device shows a long-term cycling stability which retains 101.5% of its initial capacitance even after 10000 cycles. Such a facile strategy to fabricate the hierarchical CuO@MnO2 core-shell nanostructure with significantly improved functionalities opens up a novel avenue to design electrode materials on demand for high-performance supercapacitor applications.
制备具有分级核壳结构的纳米材料是电化学领域目前的研究热点,因为人们希望以此制备高效的超级电容器用电极。本工作采用简单且经济有效的方法制备了 CuO@MnO2 核壳纳米结构,无需使用任何表面活性剂,并将其作为超级电容器的电极进行了应用。以 CuO@MnO2 核壳纳米结构作为正极、微波剥离氧化石墨(MEGO)作为负极组装成的非对称超级电容器具有 22.1 Wh kg-1 的能量密度和 85.6 kW kg-1 的最大功率密度;该器件还表现出优异的长期循环稳定性,经过 10000 次循环后仍保持初始电容的 101.5%。这种简单的方法制备出的分级 CuO@MnO2 核壳纳米结构具有显著改善的功能,为按需设计用于高性能超级电容器应用的电极材料开辟了新途径。