Westfälische Wilhelms Universität, Institut für Physikalische Chemie-MEET, Corrensstrasse 28/30, 48149 Münster (Germany).
ChemSusChem. 2014 Jun;7(6):1710-8. doi: 10.1002/cssc.201301331. Epub 2014 Mar 28.
Carbon-coated Li3V2(PO4)3 (LVP) displaying nanostructured morphology can be easily prepared by using ionic-liquid-assisted sol-gel synthesis. The selection of highly viscous and thermally stable ionic liquids might promote the formation of nanostructures during the sol-gel synthesis. The presence of these structures shortens the diffusion paths and enlarges the contact area between the active material and the electrolyte; this leads to a significant improvement in lithium-ion diffusion. At the same time, the use of ionic liquids has a positive influence on the coating of the LVP particles, which improves the electronic conductivity of this material; this leads to enhanced charge-transfer properties. At a high current density of 40 C, the LVP/N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide material delivered a reversible capacity of approximately 100 mA h g(-1), and approximately 99 % of the initial capacity value was retained even after 100 cycles at 50 C. The excellent high rate and cycling stability performance make Li3V2(PO4)3 prepared by ionic-liquid-assisted sol-gel synthesis a very promising cathode material for high-power electrochemical storage devices.
采用离子液体辅助溶胶-凝胶法可制备出具有纳米结构形貌的碳包覆 Li3V2(PO4)3(LVP)。选择高粘度和热稳定的离子液体可能会在溶胶-凝胶合成过程中促进纳米结构的形成。这些结构的存在缩短了扩散路径,并增大了活性材料与电解质之间的接触面积;这导致锂离子扩散显著改善。同时,离子液体的使用对 LVP 颗粒的包覆有积极影响,提高了该材料的电子导电性;这导致电荷转移性能增强。在 40C 的高电流密度下,LVP/N-丁基-N-甲基吡咯烷双(三氟甲烷磺酰基)亚胺材料的可逆容量约为 100mA h g(-1),即使在 50C 下循环 100 次后,仍保留了初始容量值的约 99%。优异的高倍率和循环稳定性性能使离子液体辅助溶胶-凝胶法制备的 Li3V2(PO4)3 成为高功率电化学储能器件非常有前途的正极材料。