Suppr超能文献

采用光谱建模和正己烷纯响应谱恢复技术分析石油污染土壤

Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane.

机构信息

Ramakrishna Mission Vivekananda University, Kolkata 700103, India.

Department of Plant and Soil Science, Texas Tech University, Box 42122, Lubbock, TX 79409, USA.

出版信息

Environ Pollut. 2014 Jul;190:10-8. doi: 10.1016/j.envpol.2014.03.005. Epub 2014 Mar 29.

Abstract

This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r(2) = 0.87, RMSE = 0.580 log10 mg kg(-1), and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r(2) = 0.65 and RMSE 0.261 log10 mg kg(-1)) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane.

摘要

本初步研究对比了使用经两种不同光谱预处理(一阶导数(FD)和标准正态变量(SNV),随后进行去趋势处理)后的 164 个石油污染土壤的可见-近红外漫反射光谱(VisNIR DRS),通过 Penalized Spline 回归(PSR)和随机森林(RF)回归两种方法,对土壤中石油污染进行快速定量。此外,提出了一种新的分析方法,即通过多变量曲线分辨交替最小二乘法(MCR-ALS),从石油污染土壤未解析混合物中回收纯的正己烷光谱和浓度分布。使用 FD 光谱的 PSR 模型(r(2) = 0.87,RMSE = 0.580 log10 mg kg(-1),残差预测偏差 = 2.78)表现优于所有其他测试模型。在存在干扰的情况下,MCR-ALS 对正己烷的定量结果(r(2) = 0.65 和 RMSE 0.261 log10 mg kg(-1))与使用 FD(PSR)模型相当。此外,MCR-ALS 能够恢复正己烷的纯光谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验