Stavniichuk Roman, Shevalye Hanna, Lupachyk Sergey, Obrosov Alexander, Groves John T, Obrosova Irina G, Yorek Mark A
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA; Department of Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine.
Diabetes Metab Res Rev. 2014 Nov;30(8):669-78. doi: 10.1002/dmrr.2549.
Peroxynitrite, a product of the reaction of superoxide with nitric oxide, causes oxidative stress with concomitant inactivation of enzymes, poly(ADP-ribosylation), mitochondrial dysfunction and impaired stress signalling, as well as protein nitration. In this study, we sought to determine the effect of preventing protein nitration or increasing peroxynitrite decomposition on diabetic neuropathy in mice after an extended period of untreated diabetes.
C57Bl6/J male control and diabetic mice were treated with the peroxynitrite decomposition catalyst Fe(III) tetramesitylporphyrin octasulfonate (FeTMPS, 10 mg/kg/day) or protein nitration inhibitor (-)-epicatechin gallate (20 mg/kg/day) for 4 weeks, after an initial 28 weeks of hyperglycaemia.
Untreated diabetic mice developed motor and sensory nerve conduction velocity deficits, thermal and mechanical hypoalgesia, tactile allodynia and loss of intraepidermal nerve fibres. Both FeTMPS and epicatechin gallate partially corrected sensory nerve conduction slowing and small sensory nerve fibre dysfunction without alleviation of hyperglycaemia. Correction of motor nerve conduction deficit and increase in intraepidermal nerve fibre density were found with FeTMPS treatment only.
Peroxynitrite injury and protein nitration are implicated in the development of diabetic peripheral neuropathy. The findings indicate that both structural and functional changes of chronic diabetic peripheral neuropathy can be reversed and provide rationale for the development of a new generation of antioxidants and peroxynitrite decomposition catalysts for treatment of diabetic peripheral neuropathy.
过氧亚硝酸盐是超氧化物与一氧化氮反应的产物,会导致氧化应激,同时使酶失活、发生多聚(ADP - 核糖基化)、线粒体功能障碍、应激信号传导受损以及蛋白质硝化。在本研究中,我们试图确定在长时间未治疗的糖尿病后,预防蛋白质硝化或增加过氧亚硝酸盐分解对小鼠糖尿病神经病变的影响。
在最初28周高血糖症后,C57Bl6/J雄性对照小鼠和糖尿病小鼠用 过氧亚硝酸盐分解催化剂八磺酸四(对 - 三甲苯基)卟啉铁(FeTMPS,10毫克/千克/天)或蛋白质硝化抑制剂( - ) - 表儿茶素没食子酸酯(20毫克/千克/天)治疗4周。
未经治疗的糖尿病小鼠出现运动和感觉神经传导速度缺陷、热和机械性痛觉减退、触觉异常性疼痛以及表皮内神经纤维丧失。FeTMPS和表儿茶素没食子酸酯均部分纠正了感觉神经传导减慢和小感觉神经纤维功能障碍,而未缓解高血糖症。仅用FeTMPS治疗可发现运动神经传导缺陷得到纠正且表皮内神经纤维密度增加。
过氧亚硝酸盐损伤和蛋白质硝化与糖尿病周围神经病变的发展有关。研究结果表明,慢性糖尿病周围神经病变的结构和功能变化均可逆转,并为开发新一代抗氧化剂和过氧亚硝酸盐分解催化剂用于治疗糖尿病周围神经病变提供了理论依据。