Suppr超能文献

使用前沿技术改善放射治疗计划、照射精度并减少对正常组织的损伤。

Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies.

作者信息

Glide-Hurst Carri K, Chetty Indrin J

机构信息

Henry Ford Health Systems, Detroit, MI, USA.

出版信息

J Thorac Dis. 2014 Apr;6(4):303-18. doi: 10.3978/j.issn.2072-1439.2013.11.10.

Abstract

In the United States, more than half of all new invasive cancers diagnosed are non-small cell lung cancer, with a significant number of these cases presenting at locally advanced stages, resulting in about one-third of all cancer deaths. While the advent of stereotactic ablative radiation therapy (SABR, also known as stereotactic body radiotherapy, or SBRT) for early-staged patients has improved local tumor control to >90%, survival results for locally advanced stage lung cancer remain grim. Significant challenges exist in lung cancer radiation therapy including tumor motion, accurate dose calculation in low density media, limiting dose to nearby organs at risk, and changing anatomy over the treatment course. However, many recent technological advancements have been introduced that can meet these challenges, including four-dimensional computed tomography (4DCT) and volumetric cone-beam computed tomography (CBCT) to enable more accurate target definition and precise tumor localization during radiation, respectively. In addition, advances in dose calculation algorithms have allowed for more accurate dosimetry in heterogeneous media, and intensity modulated and arc delivery techniques can help spare organs at risk. New delivery approaches, such as tumor tracking and gating, offer additional potential for further reducing target margins. Image-guided adaptive radiation therapy (IGART) introduces the potential for individualized plan adaptation based on imaging feedback, including bulky residual disease, tumor progression, and physiological changes that occur during the treatment course. This review provides an overview of the current state of the art technology for lung cancer volume definition, treatment planning, localization, and treatment plan adaptation.

摘要

在美国,所有新诊断出的侵袭性癌症中,超过一半是非小细胞肺癌,其中相当一部分病例在局部晚期阶段出现,导致约三分之一的癌症死亡。虽然立体定向消融放疗(SABR,也称为立体定向体部放疗或SBRT)应用于早期患者已将局部肿瘤控制率提高到>90%,但局部晚期肺癌的生存结果仍然严峻。肺癌放射治疗存在重大挑战,包括肿瘤运动、低密度介质中的精确剂量计算、限制对附近危及器官的剂量以及治疗过程中解剖结构的变化。然而,最近引入了许多可以应对这些挑战的技术进步,包括四维计算机断层扫描(4DCT)和容积锥形束计算机断层扫描(CBCT),分别用于在放疗期间实现更精确的靶区定义和肿瘤定位。此外,剂量计算算法的进步使得在异质介质中进行更精确的剂量测定成为可能,强度调制和弧形放疗技术有助于保护危及器官。新的放疗方法,如肿瘤跟踪和门控,为进一步缩小靶区边界提供了额外潜力。图像引导自适应放射治疗(IGART)基于成像反馈,包括大块残留病灶、肿瘤进展和治疗过程中发生的生理变化,为个性化计划调整带来了可能。本综述概述了肺癌靶区定义、治疗计划、定位和治疗计划调整的当前技术水平。

相似文献

1
Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies.
J Thorac Dis. 2014 Apr;6(4):303-18. doi: 10.3978/j.issn.2072-1439.2013.11.10.
2
A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view.
Phys Med Biol. 2012 Nov 21;57(22):7579-98. doi: 10.1088/0031-9155/57/22/7579. Epub 2012 Oct 26.
4
5
Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer.
Phys Med Biol. 2013 Oct 7;58(19):6641-62. doi: 10.1088/0031-9155/58/19/6641. Epub 2013 Sep 9.
6
Clinical implementation of intrafraction cone beam computed tomography imaging during lung tumor stereotactic ablative radiation therapy.
Int J Radiat Oncol Biol Phys. 2013 Dec 1;87(5):917-23. doi: 10.1016/j.ijrobp.2013.08.015. Epub 2013 Oct 8.
8
Advances in 4D medical imaging and 4D radiation therapy.
Technol Cancer Res Treat. 2008 Feb;7(1):67-81. doi: 10.1177/153303460800700109.

引用本文的文献

1
A novel internal target volume definition based on velocity and time of respiratory target motion for external beam radiotherapy.
Radiol Phys Technol. 2024 Dec;17(4):843-853. doi: 10.1007/s12194-024-00837-3. Epub 2024 Sep 13.
3
Four-dimensional treatment planning strategies for dynamic tumor tracking.
J Appl Clin Med Phys. 2024 Jun;25(6):e14269. doi: 10.1002/acm2.14269. Epub 2024 Jan 18.
4
A standardized workflow for respiratory-gated motion management decision-making.
J Appl Clin Med Phys. 2022 Aug;23(8):e13705. doi: 10.1002/acm2.13705. Epub 2022 Jun 23.
5
Dose measurements in a thorax phantom at 3DCRT breast radiation therapy.
Rep Pract Oncol Radiother. 2021 Apr 14;26(2):242-250. doi: 10.5603/RPOR.a2021.0037. eCollection 2021.
6
Four-dimensional dose calculations for dynamic tumour tracking with a gimbal-mounted linear accelerator.
J Appl Clin Med Phys. 2021 Jun;22(6):16-25. doi: 10.1002/acm2.13265. Epub 2021 May 27.
7
Gated Radiotherapy Development and its Expansion.
J Biomed Phys Eng. 2021 Apr 1;11(2):239-256. doi: 10.31661/jbpe.v0i0.948. eCollection 2021 Apr.
9
10
The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise.
Sensors (Basel). 2020 Nov 9;20(21):6396. doi: 10.3390/s20216396.

本文引用的文献

2
Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.
Phys Med Biol. 2014 Jan 6;59(1):173-88. doi: 10.1088/0031-9155/59/1/173. Epub 2013 Dec 13.
4
Evaluation of two synchronized external surrogates for 4D CT sorting.
J Appl Clin Med Phys. 2013 Nov 4;14(6):4301. doi: 10.1120/jacmp.v14i6.4301.
6
A measure to evaluate deformable registration fields in clinical settings.
J Appl Clin Med Phys. 2012 Sep 6;13(5):3829. doi: 10.1120/jacmp.v13i5.3829.
7
Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment.
Phys Med Biol. 2012 Sep 7;57(17):5361-79. doi: 10.1088/0031-9155/57/17/5361. Epub 2012 Aug 3.
10
Are the results of RTOG 0617 mysterious?
Int J Radiat Oncol Biol Phys. 2012 Mar 1;82(3):1042-4. doi: 10.1016/j.ijrobp.2011.12.032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验