Suppr超能文献

洞察醉酒的大脑?言语作为精神活性药物效应的指标。

A window into the intoxicated mind? Speech as an index of psychoactive drug effects.

作者信息

Bedi Gillinder, Cecchi Guillermo A, Slezak Diego F, Carrillo Facundo, Sigman Mariano, de Wit Harriet

机构信息

1] Division on Substance Abuse, New York State Psychiatric Institute, and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA [2] Human Behavioral Pharmacology Laboratory, Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.

Computational Biology Center-Neuroscience, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.

出版信息

Neuropsychopharmacology. 2014 Sep;39(10):2340-8. doi: 10.1038/npp.2014.80. Epub 2014 Apr 3.

Abstract

Abused drugs can profoundly alter mental states in ways that may motivate drug use. These effects are usually assessed with self-report, an approach that is vulnerable to biases. Analyzing speech during intoxication may present a more direct, objective measure, offering a unique 'window' into the mind. Here, we employed computational analyses of speech semantic and topological structure after ±3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') and methamphetamine in 13 ecstasy users. In 4 sessions, participants completed a 10-min speech task after MDMA (0.75 and 1.5 mg/kg), methamphetamine (20 mg), or placebo. Latent Semantic Analyses identified the semantic proximity between speech content and concepts relevant to drug effects. Graph-based analyses identified topological speech characteristics. Group-level drug effects on semantic distances and topology were assessed. Machine-learning analyses (with leave-one-out cross-validation) assessed whether speech characteristics could predict drug condition in the individual subject. Speech after MDMA (1.5 mg/kg) had greater semantic proximity than placebo to the concepts friend, support, intimacy, and rapport. Speech on MDMA (0.75 mg/kg) had greater proximity to empathy than placebo. Conversely, speech on methamphetamine was further from compassion than placebo. Classifiers discriminated between MDMA (1.5 mg/kg) and placebo with 88% accuracy, and MDMA (1.5 mg/kg) and methamphetamine with 84% accuracy. For the two MDMA doses, the classifier performed at chance. These data suggest that automated semantic speech analyses can capture subtle alterations in mental state, accurately discriminating between drugs. The findings also illustrate the potential for automated speech-based approaches to characterize clinically relevant alterations to mental state, including those occurring in psychiatric illness.

摘要

滥用药物可通过多种方式深刻改变精神状态,这些方式可能会促使人们使用药物。这些影响通常通过自我报告来评估,而这种方法容易受到偏差的影响。分析中毒期间的言语可能会提供一种更直接、客观的测量方法,为了解大脑提供一个独特的“窗口”。在此,我们对13名摇头丸使用者在服用±3,4-亚甲基二氧基甲基苯丙胺(MDMA;“摇头丸”)和甲基苯丙胺后言语的语义和拓扑结构进行了计算分析。在4个实验环节中,参与者在服用MDMA(0.75和1.5毫克/千克)、甲基苯丙胺(20毫克)或安慰剂后完成了一项10分钟的言语任务。潜在语义分析确定了言语内容与药物效应相关概念之间的语义接近度。基于图形的分析确定了言语的拓扑特征。评估了药物对语义距离和拓扑结构的组水平效应。机器学习分析(采用留一法交叉验证)评估了言语特征是否能够预测个体受试者的药物状态。服用MDMA(1.5毫克/千克)后的言语与“朋友”“支持”“亲密”和“融洽关系”等概念的语义接近度高于安慰剂。服用MDMA(0.75毫克/千克)后的言语与“同理心”的接近度高于安慰剂。相反,服用甲基苯丙胺后的言语与“同情”的距离比安慰剂更远。分类器区分MDMA(1.5毫克/千克)和安慰剂的准确率为88%,区分MDMA(1.5毫克/千克)和甲基苯丙胺的准确率为84%。对于两种MDMA剂量,分类器的表现处于随机水平。这些数据表明,自动化语义言语分析可以捕捉精神状态的细微变化,准确区分不同药物。研究结果还说明了基于言语的自动化方法在表征与临床相关的精神状态改变方面的潜力,包括发生在精神疾病中的改变。

相似文献

1
A window into the intoxicated mind? Speech as an index of psychoactive drug effects.
Neuropsychopharmacology. 2014 Sep;39(10):2340-8. doi: 10.1038/npp.2014.80. Epub 2014 Apr 3.
2
Detection of acute 3,4-methylenedioxymethamphetamine (MDMA) effects across protocols using automated natural language processing.
Neuropsychopharmacology. 2020 Apr;45(5):823-832. doi: 10.1038/s41386-020-0620-4. Epub 2020 Jan 24.
3
Intimate insight: MDMA changes how people talk about significant others.
J Psychopharmacol. 2015 Jun;29(6):669-77. doi: 10.1177/0269881115581962. Epub 2015 Apr 28.
4
The acute effects of 3,4-methylenedioxymethamphetamine and d-methamphetamine on human cognitive functioning.
Psychopharmacology (Berl). 2012 Apr;220(4):799-807. doi: 10.1007/s00213-011-2532-9. Epub 2011 Oct 22.
5
Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing.
Psychopharmacology (Berl). 2013 May;227(1):41-54. doi: 10.1007/s00213-012-2936-1. Epub 2012 Dec 16.
6
Amphetamine analogs methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) differentially affect speech.
Psychopharmacology (Berl). 2010 Feb;208(2):169-77. doi: 10.1007/s00213-009-1715-0. Epub 2009 Nov 17.
7
Is ecstasy an "empathogen"? Effects of ±3,4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others.
Biol Psychiatry. 2010 Dec 15;68(12):1134-40. doi: 10.1016/j.biopsych.2010.08.003. Epub 2010 Oct 14.
8
A direct comparison of the behavioral and physiological effects of methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in humans.
Psychopharmacology (Berl). 2012 Jan;219(1):109-22. doi: 10.1007/s00213-011-2383-4. Epub 2011 Jun 30.
9
MDMA and methamphetamine: some paradoxical negative and positive mood changes in an acute dose laboratory study.
Psychopharmacology (Berl). 2011 Jun;215(3):527-36. doi: 10.1007/s00213-011-2184-9. Epub 2011 Feb 12.
10
Synthetic psychoactive cathinones: hypothermia and reduced lethality compared to methamphetamine and methylenedioxymethamphetamine.
Pharmacol Biochem Behav. 2020 Apr;191:172871. doi: 10.1016/j.pbb.2020.172871. Epub 2020 Feb 12.

引用本文的文献

1
Quantitative natural language processing markers of psychoactive drug effects: A pre-registered systematic review.
J Psychopharmacol. 2025 Feb 16;39(9):2698811251319455. doi: 10.1177/02698811251319455.
5
MDMA enhances positive affective responses to social feedback.
J Psychopharmacol. 2024 Mar;38(3):297-304. doi: 10.1177/02698811231224153. Epub 2024 Jan 27.
6
Toolkit to Examine Lifelike Language (TELL): An app to capture speech and language markers of neurodegeneration.
Behav Res Methods. 2024 Apr;56(4):2886-2900. doi: 10.3758/s13428-023-02240-z. Epub 2023 Sep 27.
7
Pioneering Changes in Psychiatry: Biomarkers, Psychedelics, and AI.
ACS Med Chem Lett. 2023 Aug 18;14(9):1134-1137. doi: 10.1021/acsmedchemlett.3c00333. eCollection 2023 Sep 14.
8
Social anxiety and MDMA-assisted therapy investigation: a novel clinical trial protocol.
Front Psychiatry. 2023 Jul 14;14:1083354. doi: 10.3389/fpsyt.2023.1083354. eCollection 2023.
9
Social Psychopharmacology: Novel Approaches to Treat Deficits in Social Motivation in Schizophrenia.
Schizophr Bull. 2023 Sep 7;49(5):1161-1173. doi: 10.1093/schbul/sbad094.
10
Natural language signatures of psilocybin microdosing.
Psychopharmacology (Berl). 2022 Sep;239(9):2841-2852. doi: 10.1007/s00213-022-06170-0. Epub 2022 Jun 9.

本文引用的文献

1
Graph analysis of dream reports is especially informative about psychosis.
Sci Rep. 2014 Jan 15;4:3691. doi: 10.1038/srep03691.
2
MDMA enhances emotional empathy and prosocial behavior.
Soc Cogn Affect Neurosci. 2014 Nov;9(11):1645-52. doi: 10.1093/scan/nst161. Epub 2013 Oct 4.
3
Neural correlates of the relationship between discourse coherence and sensory monitoring in schizophrenia.
Cortex. 2014 Jun;55:77-87. doi: 10.1016/j.cortex.2013.06.011. Epub 2013 Jul 22.
5
Psychiatric symptom versus neurocognitive correlates of diminished expressivity in schizophrenia and mood disorders.
Schizophr Res. 2013 May;146(1-3):249-53. doi: 10.1016/j.schres.2013.02.002. Epub 2013 Mar 6.
6
Multichannel weighted speech classification system for prediction of major depression in adolescents.
IEEE Trans Biomed Eng. 2013 Feb;60(2):497-506. doi: 10.1109/TBME.2012.2228646. Epub 2012 Nov 21.
7
A quantitative philology of introspection.
Front Integr Neurosci. 2012 Sep 24;6:80. doi: 10.3389/fnint.2012.00080. eCollection 2012.
8
On the boundaries of blunt affect/alogia across severe mental illness: implications for Research Domain Criteria.
Schizophr Res. 2012 Sep;140(1-3):41-5. doi: 10.1016/j.schres.2012.07.001. Epub 2012 Jul 23.
9
Amphetamine as a social drug: effects of d-amphetamine on social processing and behavior.
Psychopharmacology (Berl). 2012 Sep;223(2):199-210. doi: 10.1007/s00213-012-2708-y. Epub 2012 Apr 13.
10
Speech graphs provide a quantitative measure of thought disorder in psychosis.
PLoS One. 2012;7(4):e34928. doi: 10.1371/journal.pone.0034928. Epub 2012 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验