Suppr超能文献

非线性混合效应模型设计中随机效应协方差的影响及儿科药代动力学实例分析

Influence of covariance between random effects in design for nonlinear mixed-effect models with an illustration in pediatric pharmacokinetics.

作者信息

Dumont Cyrielle, Chenel Marylore, Mentré France

机构信息

a Université Paris Diderot, Sorbonne Paris Cité , UMR 738, INSERM, Paris , France.

出版信息

J Biopharm Stat. 2014;24(3):471-92. doi: 10.1080/10543406.2014.888443.

Abstract

Nonlinear mixed-effect models are used increasingly during drug development. For design, an alternative to simulations is based on the Fisher information matrix. Its expression was derived using a first-order approach, was then extended to include covariance and implemented into the R function PFIM. The impact of covariance on standard errors, amount of information, and optimal designs was studied. It was also shown how standard errors can be predicted analytically within the framework of rich individual data without the model. The results were illustrated by applying this extension to the design of a pharmacokinetic study of a drug in pediatric development.

摘要

非线性混合效应模型在药物研发过程中的应用越来越广泛。在设计方面,一种替代模拟的方法基于费舍尔信息矩阵。其表达式通过一阶方法推导得出,随后扩展到包含协方差,并在R函数PFIM中实现。研究了协方差对标准误差、信息量和最优设计的影响。还展示了如何在丰富个体数据框架内无需模型即可通过解析方法预测标准误差。通过将此扩展应用于儿科药物研发中药代动力学研究的设计,对结果进行了说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验