Suppr超能文献

三维环面与阿诺德舌

Three-dimensional tori and Arnold tongues.

作者信息

Sekikawa Munehisa, Inaba Naohiko, Kamiyama Kyohei, Aihara Kazuyuki

机构信息

Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585, Japan.

Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571, Japan.

出版信息

Chaos. 2014 Mar;24(1):013137. doi: 10.1063/1.4869303.

Abstract

This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

摘要

本研究通过对耦合延迟逻辑斯谛映射进行李雅普诺夫分析,来分析一个包含复杂准周期分岔的阿诺德共振网。该映射可展现出二维不变环面(IT),它对应于向量场中的三维环面。在IT生成区域内,存在许多一维不变闭曲线(ICC),它们对应于向量场中的二维环面,其分布方式非常复杂但合理。周期解出现在两个不同的薄ICC生成区域的交点处,我们将这些区域称为ICC - 阿诺德舌,因为在这些交点处IT的所有三个独立频率分量都变为有理数。此外,我们观察到一种显著的分岔结构,即在准周期霍普夫分岔(或准周期奈马克 - 萨克分岔)边界附近,传统的阿诺德舌通过奈马克 - 萨克分岔转变为ICC - 阿诺德舌。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验