Sekikawa Munehisa, Inaba Naohiko, Kamiyama Kyohei, Aihara Kazuyuki
Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585, Japan.
Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571, Japan.
Chaos. 2014 Mar;24(1):013137. doi: 10.1063/1.4869303.
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
本研究通过对耦合延迟逻辑斯谛映射进行李雅普诺夫分析,来分析一个包含复杂准周期分岔的阿诺德共振网。该映射可展现出二维不变环面(IT),它对应于向量场中的三维环面。在IT生成区域内,存在许多一维不变闭曲线(ICC),它们对应于向量场中的二维环面,其分布方式非常复杂但合理。周期解出现在两个不同的薄ICC生成区域的交点处,我们将这些区域称为ICC - 阿诺德舌,因为在这些交点处IT的所有三个独立频率分量都变为有理数。此外,我们观察到一种显著的分岔结构,即在准周期霍普夫分岔(或准周期奈马克 - 萨克分岔)边界附近,传统的阿诺德舌通过奈马克 - 萨克分岔转变为ICC - 阿诺德舌。