Suppr超能文献

一种用于计算二元响应样本量的优化方法。

An optimization approach to calculating sample sizes with binary responses.

作者信息

Maroufy Vahed, Marriott Paul, Pezeshk Hamid

机构信息

a Department of Statistics and Actuarial Science , University of Waterloo , Waterloo , Ontario , Canada.

出版信息

J Biopharm Stat. 2014;24(4):715-31. doi: 10.1080/10543406.2014.902851.

Abstract

In this article, we discuss an optimization approach to the sample size question, founded on maximizing the value of information in comparison studies with binary responses. The expected value of perfect information (EVPI) is calculated and the optimal sample size is obtained by maximizing the expected net gain of sampling (ENGS), the difference between the expected value of sample information (EVSI) and the cost of conducting the trial. The data are assumed to come from two independent binomial distributions, while the parameter of interest is the difference between the two success probabilities, [Formula: see text]. To formulate our prior knowledge on the parameters, a Dirichlet prior is used. Monte Carlo integration is used in the computation and optimization of ENGS. We also compare the results of this approach with existing Bayesian methods and show how the new approach reduces the computational complexity considerably.

摘要

在本文中,我们讨论了一种针对样本量问题的优化方法,该方法基于在二元反应的比较研究中最大化信息价值。计算了完美信息的期望值(EVPI),并通过最大化抽样的预期净收益(ENGS)来获得最优样本量,ENGS是样本信息的期望值(EVSI)与进行试验的成本之间的差值。假设数据来自两个独立的二项分布,而感兴趣的参数是两个成功概率之间的差值,[公式:见原文]。为了构建我们对参数的先验知识,使用了狄利克雷先验。在ENGS的计算和优化中使用了蒙特卡罗积分。我们还将这种方法的结果与现有的贝叶斯方法进行了比较,并展示了新方法如何显著降低计算复杂度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验