Armstrong Richard A
School of Life and Health Sciences, Aston University, Birmingham, UK.
Ophthalmic Physiol Opt. 2014 Sep;34(5):502-8. doi: 10.1111/opo.12131. Epub 2014 Apr 2.
The Bonferroni correction adjusts probability (p) values because of the increased risk of a type I error when making multiple statistical tests. The routine use of this test has been criticised as deleterious to sound statistical judgment, testing the wrong hypothesis, and reducing the chance of a type I error but at the expense of a type II error; yet it remains popular in ophthalmic research. The purpose of this article was to survey the use of the Bonferroni correction in research articles published in three optometric journals, viz. Ophthalmic & Physiological Optics, Optometry & Vision Science, and Clinical & Experimental Optometry, and to provide advice to authors contemplating multiple testing.
Some authors ignored the problem of multiple testing while others used the method uncritically with no rationale or discussion. A variety of methods of correcting p values were employed, the Bonferroni method being the single most popular. Bonferroni was used in a variety of circumstances, most commonly to correct the experiment-wise error rate when using multiple 't' tests or as a post-hoc procedure to correct the family-wise error rate following analysis of variance (anova). Some studies quoted adjusted p values incorrectly or gave an erroneous rationale.
Whether or not to use the Bonferroni correction depends on the circumstances of the study. It should not be used routinely and should be considered if: (1) a single test of the 'universal null hypothesis' (Ho ) that all tests are not significant is required, (2) it is imperative to avoid a type I error, and (3) a large number of tests are carried out without preplanned hypotheses.
由于进行多次统计检验时I型错误风险增加,邦费罗尼校正用于调整概率(p)值。该检验的常规使用受到批评,认为其不利于合理的统计判断、检验错误的假设、虽降低了I型错误的发生几率但却以II型错误为代价;然而它在眼科研究中仍然很受欢迎。本文旨在调查邦费罗尼校正在三种验光期刊发表的研究文章中的使用情况,这三种期刊分别是《眼科与生理光学》《验光与视觉科学》以及《临床与实验验光》,并为考虑进行多次检验的作者提供建议。
一些作者忽略了多次检验的问题,而另一些作者在没有任何理论依据或讨论的情况下不加批判地使用该方法。采用了多种校正p值的方法,其中邦费罗尼方法是最常用的。邦费罗尼方法在各种情况下都有使用,最常见的是在使用多个“t”检验时校正实验性错误率,或作为方差分析(anova)后校正族性错误率的事后程序。一些研究错误地引用了校正后的p值或给出了错误的理论依据。
是否使用邦费罗尼校正取决于研究的具体情况。不应常规使用,在以下情况下应予以考虑:(1)需要对“所有检验均无显著性”这一“通用零假设”(Ho)进行单一检验;(2)必须避免I型错误;(3)在没有预先设定假设的情况下进行大量检验。