Suppr超能文献

克服多站点功能磁共振成像研究中的位点变异性:一种用于增强机器学习模型通用性的自动编码器框架。

Overcoming Site Variability in Multisite fMRI Studies: an Autoencoder Framework for Enhanced Generalizability of Machine Learning Models.

作者信息

Almuqhim Fahad, Saeed Fahad

机构信息

Knight Foundation School of Computing and Information Sciences (KFSCIS), Florida International University, Miami, FL, USA.

Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.

出版信息

Neuroinformatics. 2025 Sep 2;23(3):46. doi: 10.1007/s12021-025-09746-1.

Abstract

Harmonizing multisite functional magnetic resonance imaging (fMRI) data is crucial for eliminating site-specific variability that hinders the generalizability of machine learning models. Traditional harmonization techniques, such as ComBat, depend on additive and multiplicative factors, and may struggle to capture the non-linear interactions between scanner hardware, acquisition protocols, and signal variations between different imaging sites. In addition, these statistical techniques require data from all the sites during their model training which may have the unintended consequence of data leakage for ML models trained using this harmonized data. The ML models trained using this harmonized data may result in low reliability and reproducibility when tested on unseen data sets, limiting their applicability for general clinical usage. In this study, we propose Autoencoders (AEs) as an alternative for harmonizing multisite fMRI data. Our designed and developed framework leverages the non-linear representation learning capabilities of AEs to reduce site-specific effects while preserving biologically meaningful features. Our evaluation using Autism Brain Imaging Data Exchange I (ABIDE-I) dataset, containing 1,035 subjects collected from 17 centers demonstrates statistically significant improvements in leave-one-site-out (LOSO) cross-validation evaluations. All AE variants (AE, SAE, TAE, and DAE) significantly outperformed the baseline mode (p < 0.01), with mean accuracy improvements ranging from 3.41% to 5.04%. Our findings demonstrate the potential of AEs to harmonize multisite neuroimaging data effectively enabling robust downstream analyses across various neuroscience applications while reducing data-leakage, and preservation of neurobiological features. Our open-source code is made available at https://github.com/pcdslab/Autoencoder-fMRI-Harmonization .

摘要

协调多站点功能磁共振成像(fMRI)数据对于消除特定站点的变异性至关重要,这种变异性会阻碍机器学习模型的通用性。传统的协调技术,如ComBat,依赖于加法和乘法因子,可能难以捕捉扫描仪硬件、采集协议以及不同成像站点之间信号变化之间的非线性相互作用。此外,这些统计技术在模型训练期间需要来自所有站点的数据,这可能会对使用这种协调后的数据训练的机器学习模型产生数据泄露的意外后果。使用这种协调后的数据训练的机器学习模型在对未见数据集进行测试时可能导致可靠性和可重复性较低,限制了它们在一般临床应用中的适用性。在本研究中,我们提出使用自动编码器(AE)作为协调多站点fMRI数据的替代方法。我们设计并开发的框架利用AE的非线性表示学习能力来减少特定站点的影响,同时保留生物学上有意义的特征。我们使用自闭症脑成像数据交换I(ABIDE-I)数据集进行评估,该数据集包含从17个中心收集的1035名受试者,结果表明在留一站点法(LOSO)交叉验证评估中有统计学上的显著改进。所有AE变体(AE、SAE、TAE和DAE)均显著优于基线模式(p < 0.01),平均准确率提高范围为3.41%至5.04%。我们的研究结果表明,AE有潜力有效协调多站点神经成像数据,从而在各种神经科学应用中实现强大的下游分析,同时减少数据泄露并保留神经生物学特征。我们的开源代码可在https://github.com/pcdslab/Autoencoder-fMRI-Harmonization获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验